# Rex\* MatTop\* Modular Chains



#### SALES OFFICES AND / OR DISTRIBUTION CENTRE

#### EUROPE

AUSTRIA: Wien DENMARK: Copenhagen FRANCE: Paris, Lyon GERMANY: Betzdorf, Dusseldorf, Siegen, Stuttgart GREAT BRITAIN: Warrington, ITALY: Correggio (RE) NETHERLANDS: Rotterdam

#### NORTH AMERICA

CANADA: Edmonton, Montreal, Toronto, Vancouver UNITED STATES: Atlanta (GA), Columbus (OH), Dallas (TX), Fresno (CA), Grafton (WI) (14 regional sales offices throughout the U.S.A.)

#### LATIN & SOUTH AMERICA

Headquarters: Miami (FL)-USA MEXICO: Cordoba, Guadalajara, Mexico City, Queretaro BRAZIL: Sao Leopoldo, Sao Paulo

#### ASIA & FAR EAST

AUSTRALIA: Sydney SINGAPORE: Singapore



Registered Trade marks:

**Rex**<sup>®</sup> **MatTop<sup>®</sup> Rex** - HP<sup>™</sup> **Rex** - LF<sup>®</sup> Dynamic Transfer System<sup>™</sup> Twist Lock<sup>™</sup>

Reproduction, even partial, of this catalogue is illegal.

Rexnord is continually investigating methods of improving products and introducing new technology, we reserve the right to modify data and features shown in the catalogue.

For further technical information please apply to our Technical Dept.

Since 1936, when **Rexnord** had developed and introduced the first version of **TableTop**<sup>®</sup> conveyor chains, they have been responsible for most of the advances in the technology of conveyor chains and associated products. Special chains have been developed for conveying small pharmaceutical vials to heavy industrial parts.

The **Rexnord MatTop**<sup>®</sup> chains, today, are finding their way in all sorts of different industries, such as soft drinks, brewing, dairy, packaging, parts handling, food processing and container handling. **Rexnord** has established partnerships with the major original equipment manufacturers on a worldwide scale.

**Rexnord** products guarantee a worldwide service and availability. Products are being manufactured at different locations and distributed via numerous distribution centres throughout the world. Further several teams of engineers, strategically located are at our customer's disposal for application assistance.



Correggio (Italy) Distribution

> Sao Leopoldo (Brasil)







Correggio (Italy) Production

Betzdorf (Germany)







- State of the art equipment and technology
  - Continuous quality improvement
- Widest range of products developed in close collaboration with leading original equipment manufacturers
  - Continuous training of employees in all sectors
    - High quality level
    - Dedicated application engineering
  - Use of FDA approved materials and development of products, certified by the USDA
    - ISO 9001 Certification



**Mat Top**<sup>®</sup>

QUALITY IS A REXNORD COMMITMENT







WITH THESE ELEMENTS REXNORD HAS BECOME THE WORLDWIDE LEADER IN THE PRODUCTION AND DEVELOPMENT OF PRODUCTS FOR THE CONVEYOR INDUSTRY



# Rexnord

# Mat Top®

## INDEX

CHAIN

5997

5998

| PLICATION EXAMPLES                                                                                                                                                                                                                                                                                                                           | Page      | Series         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|
| Beverage industry                                                                                                                                                                                                                                                                                                                            | 6         |                |
| Can manufacturing                                                                                                                                                                                                                                                                                                                            | 7         | 7956           |
| Food industry                                                                                                                                                                                                                                                                                                                                | 8/9       | 7550           |
| Meat and poultry industry                                                                                                                                                                                                                                                                                                                    | 10        |                |
| Fish industry                                                                                                                                                                                                                                                                                                                                | 10        |                |
| Bakery and snacks industry                                                                                                                                                                                                                                                                                                                   | 11        | 4505           |
| ARACTERISTICS OF CHAIN MATERIALS                                                                                                                                                                                                                                                                                                             | 12.1/13.1 | 1505<br>1506   |
| DDUCT RANGE                                                                                                                                                                                                                                                                                                                                  | 12/13     |                |
| at Top® CHAIN INFORMATION                                                                                                                                                                                                                                                                                                                    | 14/53     |                |
| Accessories (Pushers - Side guards - Combs/transferplates)<br>Drive sprockets                                                                                                                                                                                                                                                                |           | 5935<br>5936   |
| MINAL WIDTHS OF CHAIN                                                                                                                                                                                                                                                                                                                        | 56/67     | 5935           |
| GINEERING MANUAL                                                                                                                                                                                                                                                                                                                             |           | vacuun<br>8505 |
| Elements for chain calculations                                                                                                                                                                                                                                                                                                              | 70        | 8506           |
| Calculation of chain pull - Calculation of required horsepower<br>Calculations of chains series 6390 - 6391 - 6392                                                                                                                                                                                                                           | 71        | 0500           |
| Shaft calculations                                                                                                                                                                                                                                                                                                                           | 72        |                |
| Chain support                                                                                                                                                                                                                                                                                                                                | 73/76     | 7705           |
| Support for conveyors - Material characteristics - Thermal expansion -<br>Parallel guides - Flat bed guides - Herringbone guides - Types of UHM<br>wear strip - Width of wear strip - Wear strip position - Guide systems<br>return - Return with rollers - Serpentine return - Catenary for<br>uni-directional, bi-directional and inclined |           | 7706<br>2100   |
| Sprockets                                                                                                                                                                                                                                                                                                                                    | 77/81     | 4705           |
| Material characteristics - Operation at ambient temperatures -<br>Operation at high/low temperatures - Keyway dimensions<br>Installation on shafts                                                                                                                                                                                           |           | 4706<br>4707   |
| Combs/transferplates                                                                                                                                                                                                                                                                                                                         | 82        | 4705           |
| Material characteristics - Positioning - Installation                                                                                                                                                                                                                                                                                        |           | vacuun         |
| Dynamic Transfer System™                                                                                                                                                                                                                                                                                                                     | 83        | 5705           |
| Positioning                                                                                                                                                                                                                                                                                                                                  |           | 5706           |
| Vacuum chains                                                                                                                                                                                                                                                                                                                                | 84        | 4812           |
| Version of hole pattern - How to order the chain                                                                                                                                                                                                                                                                                             |           | 4803           |
| Installation and maintenance of chain                                                                                                                                                                                                                                                                                                        | 85        |                |
| Chemical resistance                                                                                                                                                                                                                                                                                                                          | 86        |                |
| Conversion factors                                                                                                                                                                                                                                                                                                                           | 87        |                |
| Cleaning                                                                                                                                                                                                                                                                                                                                     | 88        |                |
|                                                                                                                                                                                                                                                                                                                                              |           |                |
|                                                                                                                                                                                                                                                                                                                                              |           | 4809           |
|                                                                                                                                                                                                                                                                                                                                              |           | 5996           |

# **BEVERAGE INDUSTRY**

**Rexnord** has a long experience in the beverage industry. In collaboration with the major equipment manufacturers and producers a vast range of **MatTop**<sup>®</sup> chains have been developed. Wear resistant materials with a low coefficient of friction are standard.

The available chain range varies from extreme small pitch chains for can conveyors to large pitch chains for pasteurizers. For transfer between the various conveyors **Rexnord** has developed DTS<sup>™</sup>, Dynamic Transfer System, which prevents tipping over of containers and reduces backline pressure.



# CAN MANUFACTURING

The manufacturers of cans have special requirements as chains are in operation under extreme conditions. **MatTop**<sup>®</sup> chains have a low coefficient of friction. The small pitch of the chains permits easy transfer between conveyors. The special nose-over transfer design prevents cans staying on transfer points. For vacuum elevators special chains are available with various hole patterns.



# **FOOD INDUSTRY**

MatTop<sup>®</sup> chains are offering a wide variety of solutions especially for this industry. The modules are designed to prevent dirt trap and ensure easy cleanability. Special developed materials allow for applications under freezing conditions (down to -70°C) and high temperatures (+130°C). Chains can be supplied with pushers and sideguards for the transport of bulk products on horizontal and inclined conveyors. MatTop<sup>®</sup> chains have FDA approvals.





# MEAT, POULTRY AND FISH INDUSTRY

To meet the requirements of this industry the **MatTop**<sup>®</sup> range of chains is offering various solutions for these industries. Severall chain types have been approved by the USDA for applications in the meat and poultry industry. These chains have specially designed modules to allow for easy cleaning. **MatTop**<sup>®</sup> chains have FDA approvals.



# BAKERY AND SNACK INDUSTRY

MatTop<sup>®</sup> chains are being used in various applications in the bakery industry. Chains are available with pushers and sideguards for the transport of product in bulk. The standard MatTop<sup>®</sup> chains in polypropylene are suitable for microwave applications.



# CHAIN MATERIALS

## Standard materials

## HP™

**WHP**<sup>™</sup>

#### HP RESIN (High Performance)

Longer sliding wear life, reduced chain elongation, lowest available friction. The continuous search of Rexnord for improvement of their product has resulted in the development of a new, patentd, material: Rex HP <sup>™</sup> High Performance. This new material has the lowest coefficient of friction, available on the market.

This material is especially suitable for applications, where external lubrification is not possible. Operating temperature of Rex HP ™ material:

in air (- 40 to + 80 °C)

in hot water (+ 65 °C)

Colour: HP (dark grey), WHP (white).

#### Longer sliding wear life \*



Rex HP<sup>™</sup> high performance resin can increase wear life up to 40%. Extensive testing has proven that new HP material can reduce wear as much as 40% over acetal and 25% over Rex LF<sup>®</sup> acetal

#### Reduced chain elongation \*



New technology virtually eliminates break-in stretch and reduces elongation due to wear.

Through extensive testing, Rexnord has achieved the optimum design to minimize break-in wear while maximizing overall performance.

#### Lowest available friction \*



\* = Graph shows comparative results at high-speed, dry operation.

## LF

#### ACETAL (low coefficient of friction)

Material with low coefficient of friction. Optimum strength. Recommended for applications with high loads, high speeds and long centre distances. High wear resistance. Operating temperatures: in air (- 40 a + 80 °C) in hot water (+ 65 °C) Colour: brown

## **PRODUCT RANGE**



#### POLYPROPYLENE (high temperature resistant)

Suitable for applications at high temperatures (up to105° C, under dry and humid conditions). High chemical resistance. Operating temperatures: in air (+ 5 a + 105° C) in hot water  $(+105^{\circ} \text{ C})$ Colour : HT (beige), WHT (white), BHT (blue).



#### YSM RESIN (high temperature resistant)

YSM resin has an improved temerature resistance compared with HT - WHT, (up to 130° C). Operating temperatures: in air (+ 5 a + 130 °C) in hot water (+ 130 °C)

Colour : yellow.

## WLT

#### POLYETYLENE (low temperature resistant)

Suitable for applications at low temperatures (down to - 70° C). High chemical resistance. Excellent resistance against superficial damage. Operating temperatures: in air (- 70 a + 25° C) Colour :white

12.1

## **CHAIN MATERIALS**

## Special materials

# D

#### ACETAL

An economical alternative to our LF acetal material. The mechanical properties are equal to acetal LF, however the coefficient of friction and wear resistance are inferior. Operating temperature:

in air (- 40 a + 80 °C) in hot water (+ 65 °C) Colour :grey.

## PRODUCT RANGE



#### AS RESIN (static conductive)

To reduce the risk of accumulation of electrostatic loads. High electrical conductivity. Colour : black.

For every application please refer to our engineering department.

## WSM

#### WSM RESIN (wear resistant)

Material with a high wear resistance and resistance against superficial damage. Recommended for abbrasive applications and where superficial damage may occur. Strength is equal to LF acetal . Operating temperatures: in air (- 40 a + 80 °C) in hot water (+ 65 °C) Colour : white.

## UV

#### UV RESIN (ultraviolet resistant)

Materials, stabilized to resist ultraviolet radiation. IRecommended for critical applications outdoors. The following materials are available: acetal (DUV) polypropylene (HUV) polyethylene (LUV) Colour : black.

## **Certification FDA & USDA**

#### FDA

American institute (Food and Drug Administration), responsible for the certification of materials to be in contact with food. For direct contact with food the following materials have been approved:

HP, WHP, HT, WHT, WLT, WSM.

USDA

United States Department of Agriculture, responsible for the approval of components and machinery in the meat, poultry and dairy industries.

The following chains have been approved for the meat and poultry industry: 2100, 5996.

|            | рітсн                                                            | 31,75                                            | 15                                                                            |                                                                                                                                                                 | 19,05                                                                                                      | 2                                                                    | .5,4                                                       |
|------------|------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------|
| SOLID TOP  | MATERIAL<br>APPROVAL<br>OPEN AREA<br>STRENGTH N/m                | 7956<br>НРтм WHРтм<br>FDA<br>2%<br>4000 (Newton) | 1505         HP™       WHT         FDA         2%         13200 HP - 7300 WHT | 8505<br>HP™ WHT WLT<br>FDA<br>2%<br>29000 HP - 16000 WHT - 10600 WLT                                                                                            | <b>5935</b><br><b>LF HT</b><br>FDA (HT)<br>5%<br>13100 LF - 7300 HT                                        | 7705         Гртм         WHРтм         FDA         3%         43040 |                                                            |
|            | ACCESSORIES                                                      |                                                  | Dynamic Transfer System™                                                      | Flights - Tab guide<br>Dynamic Transfer System™                                                                                                                 | Flights - Side guards - Tab guide<br>Dynamic Transfer System™                                              | Dynamic Transfer System™                                             | 2100                                                       |
| ATED TOP   |                                                                  |                                                  |                                                                               | 8506                                                                                                                                                            | 5936                                                                                                       |                                                                      | 2100                                                       |
| PERFORATED | MATERIAL<br>APPROVAL<br>OPEN AREA<br>STRENGTH N/m<br>ACCESSORIES |                                                  | HP™ WHT<br>FDA<br>26%<br>13200 HP - 7300 WHT<br>Dynamic Transfer System™      | HP™         WHT         WLT           F D A         22%         29000 HP - 16000 WHT - 10600 WLT           Flights - Tab guide         Dynamic Transfer System™ | LFHP™HTFDA (HP™ - HT)16%13100 LF/HP - 7300 HTFlights - Side guards - Tab guide<br>Dynamic Transfer System™ | HP™ WHP™<br>FDA<br>8%<br>43040<br>Dynamic Transfer System™           | LF<br>FDA - US<br>44%<br>16100 LF<br>Flights<br>Transfer p |
| RAISED TOP | MATERIAL<br>APPROVAL<br>OPEN AREA<br>STRENGTH N/m<br>ACCESSORIES |                                                  |                                                                               |                                                                                                                                                                 |                                                                                                            |                                                                      |                                                            |
| VACUUM     | MATERIAL<br>APPROVAL<br>OPEN AREA<br>STRENGTH N/m<br>ACCESSORIES |                                                  |                                                                               |                                                                                                                                                                 | <b>5935 vacuum</b><br><b>LF HT</b><br>FDA (HT)<br>8%<br>13100 LF - 7300 HT<br>Tab guide                    |                                                                      |                                                            |
|            | PAGE                                                             | 15                                               | 19                                                                            | 23                                                                                                                                                              | 26                                                                                                         | 29                                                                   |                                                            |



FDA (HT)

2% 17500 LF - 8750 HT

Flights - Side guards Transfer plates



USDA (WHT)

) LF - 7300 WHT

er plates







FDA (HT) 23% 17500 LF - 8750 HT Transfer combs



## LF HT

FDA (HT) 5% 17500 LF - 8750 HT Transfer plates

32

| 38,1                                                       |                                                                              |                                                                   | 50                                                                                                                                                                                                 |                                                                                                   | 57,15                                                                                                                       |
|------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 5705                                                       |                                                                              |                                                                   | 6390                                                                                                                                                                                               |                                                                                                   |                                                                                                                             |
| HP™  WHP™    FDA - USDA    2%    17500    Transfer plates  |                                                                              |                                                                   | WHT     BHT     YSM     WLT       FDA (WHT - BHT - WLT)     2%       -     -       Flights - Side guards                                                                                           |                                                                                                   |                                                                                                                             |
| 5706                                                       |                                                                              |                                                                   | 6391<br>6392                                                                                                                                                                                       |                                                                                                   | 5996                                                                                                                        |
| HP™  WHP™    FDA - USDA    22%    17500    Transfer plates | LF HT<br>FDA (HT)<br>33%<br>14600 LF - 7300 HT<br>Flights<br>Transfer plates |                                                                   | WHT         BHT         YSM         WLT           FDA (WHT - BHT - WLT)         26% (6391) - 48% (6392)         -           -         -         -           Flights (6391) - Side guards         - |                                                                                                   | LF WHT WLT<br>FDA - USDA (WHT - WLT)<br>21%<br>51000 LF - 35000 WHT - 23300 WLT<br>Flights - Side guards<br>Transfer plates |
|                                                            |                                                                              | 4803                                                              |                                                                                                                                                                                                    | 4809                                                                                              | 5997                                                                                                                        |
|                                                            |                                                                              | LF HT<br>FDA (HT)<br>44%<br>21900 LF - 13000 HT<br>Transfer combs |                                                                                                                                                                                                    | LF         HT           FDA (HT)         34%           43800 LF - 29200 HT         Transfer combs | HT           F D A           22%           35000           Transfer comb                                                    |
|                                                            |                                                                              |                                                                   |                                                                                                                                                                                                    |                                                                                                   |                                                                                                                             |
|                                                            |                                                                              |                                                                   |                                                                                                                                                                                                    |                                                                                                   |                                                                                                                             |
|                                                            |                                                                              |                                                                   |                                                                                                                                                                                                    |                                                                                                   |                                                                                                                             |

38

40

42

44



PITCH

SOLID TOP

PERFORATED TOP

MATERIAL APPROVAL OPEN AREA STRENGTH N/m ACCESSORIES



## WHT WLT

FDA - USDA 45% 35000 WHT - 23300 WLT Flights - Side guards Transfer plates MATERIAL APPROVAL OPEN AREA STRENGTH N/m ACCESSORIES

**RAISED TOP** 

MATERIAL APPROVAL OPEN AREA STRENGTH N/m ACCESSORIES

VACUUM

MATERIAL

APPROVAL OPEN AREA STRENGTH N/m ACCESSORIES

46

# **Rex Flex® 7956 Chain:** Side Flexing and High Strength



- Unique and innovative design works off of the chain center point. This design allows the load limit to be unchanged for straight or sideflexing applications
- High strength, abrasion resistant and good chemical resistance
- Eliminates gaps in corners and prevents pinching
- Easy to clean and maintain
- HP<sup>™</sup> material for minimum friction and wear against wear strips

- Available with hold-down tabs for sideflexing applications
- The tabs are mounted into the chain with a special click-in construction, that secures the pins at the same time



#### рітсн **31,75 SERIES 7956**

The new Rex Flex® combines the strength and product handling advantages of a MatTop<sup>®</sup> chain with flexibility and corner retention of a tabbed Table Top<sup>®</sup> chain. Eliminates gaps in corners and prevents pinching.



#### MATERIAL CHARACTERISTICS

see page 12.1-13.1

## ENGINEERING INFORMATION

Chain pull calculations: see page 70 Guide rail and catenary: see page 73-76 Mounting instructions: see page 85 Chemical resistance : see page 86





31,75 mm (11/4")

#### Applications

Presently available in 15" wide, the RexFlex<sup>®</sup> 7956 is perfect for case handling applications as a substitute for roller, skate wheel, powered roller, and line shaft conveyors. It is also a good substitute for dual-lane conveyors currently using 71/2 inch wide chains.



Note: guide clearance is the same for straight running as well as in curves

| Standard materials                                      | HP™                  | WHP™                 |
|---------------------------------------------------------|----------------------|----------------------|
|                                                         | High per             | formance             |
| Colour                                                  | Grey                 | White                |
| TEMPERATURE OF OPERATION (°C)<br>in air<br>in hot water | - 40 to + 80<br>+ 65 | - 40 to + 80<br>+ 65 |
| Pin material                                            | Polyeste             | r (white)            |

Pin retention : with tab guide.

Available on request other materials and colours.

#### Specifications:

| Chain width  | Working | Radius<br>min. | Guide clearance GC      |                |
|--------------|---------|----------------|-------------------------|----------------|
| K<br>mm inch | load N  | R<br>mm        | Straight Curve<br>mm mm | Weight<br>Kg/m |
| 379,2 14,93  | 4000    | 951,5          | 345 345                 | 4,38           |

#### Radius min.



## SPROCKETS for 7956



| Code<br>Rexnord<br>Nr. | No.<br>of teeth<br>Z<br>actual effe |   | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Bore<br>dia.<br>Df<br>mm | Weight<br>kg |
|------------------------|-------------------------------------|---|---------------------------|-----------------------------|--------------------------|--------------|
| NS 7956 T16 R          | <b>16</b> 1                         | 6 | 162,74                    | 163,2                       | 25-30-35-40              | 0,46         |

Material : reinforced polyamid PA FV (black).

Seat keyway : UNI 6604 - 69. See page 77. Material characteristics / mounting instruction : see page 77 - 81

| Code<br>Rexnord<br>Nr. | No.<br>of teeth<br>Z<br>actual effective | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Square<br>bore<br>B<br>mm | Weight<br>kg |
|------------------------|------------------------------------------|---------------------------|-----------------------------|---------------------------|--------------|
| NS 7956 T16 S          | . <b>16</b> 16                           | 162,74                    | 163,2                       | 40x40-50x50-60x60         | 0,43         |

Material : reinforced polyamid PA FV (black).

Material characteristics / mounting instruction : see page 77 - 81



Material : polyamid PA (white). Material characteristics / mounting instruction : see page 77 - 81

NS 7956 - split execution - square bore

**CHAINS AND** ACCESSORIES



Example of codenumber: NS 7956 T16 R30 (including bore)

# Rex<sup>®</sup> 1500 Chain: Offers Two Solutions to Product Transfers

Rexnord has introduced the unique 1500 Series MatTop® Chain to help eliminate container tipping and jam-ups at conveyor transfer points. The chain is designed to make in-line noseover transfers and 90° transfers stable, smooth and trouble-free.



In line transfer with loose products

#### Sprocket position





In line transfer with aluminium cans

#### Solution 1:

Typical chain and belt sprockets are approximately 130 to 150 mm diameter. For end-to-end transfers, long stationary dead plates are required. Upstream products need to push the containers across the deadplates and can cause tipping or even damage product. In addition, at the end of a shift or production run, containers must be cleared off manually. Rex® 1500 Series MatTop® Chain eliminates these long deadplates. With its small, 15 mm pitch and curved bottom contour, the deadplate between adjacent in-line 1500 chain conveyors, can be as short as 22 mm. This makes the 1500 series chain ideal for the newer, lighter, less stable containers, especially aluminum cans and PET bottles. Most 1500 Series food applications require no deadplates at all.

#### Solution 2:

The 1505 SingleModule DynamicTransfer System<sup>™</sup> is for 90° transfers that eleminate deadplates and are completely self-clearing. For either conventional 90° brush transfers (side-to-tail) or 90° head end-to-side transfers, a short intermediate strand of 1505 DTS<sup>™</sup> chain bridges the gap between conveyors for smooth, reliable transfers. Guide tabs on the bottom can be used with Marbett Part. 356 or 367. Rex<sup>®</sup> 1505 DTS<sup>™</sup> is available in 133.4 mm width only; overall width 160 mm.





90° transfer with PET bottles

# SERIES 1505-1506 PITCH 15

Chains for lightmedium loads. The small pitch of 15 mm reduces the cordal effect and permits the use of very short transfer plates. Pins are locked in place by means of removable plugs.

#### CHAIN WIDTH see page 56

MATERIAL CHARACTERISTICS

see page 12.1-13.1

#### ENGINEERING INFORMATION

Chain pull calculations: see page 70 Guide rail and catenary: see page 73-76 Mounting instructions: see page 85 Chemical resistance : see page 86



# Open area 1505 (2%)

ea 1505 (2%) 1506 (26%)



#### Applications

Pitch

For retrofit application, Rex<sup>®</sup> 1500 chain has the same thickness as Rex<sup>®</sup> 5935, 5936 and 2100 chains. It can also replace similar size competitive belts.

| 1505 - | 1506 |
|--------|------|
|        |      |



#### Maximum recommended working load- Fmax



| Standard materials                                      | HP™ WHT                        |
|---------------------------------------------------------|--------------------------------|
|                                                         | High performance Polypropylene |
| Colour                                                  | Grey White                     |
| Nominal strength * (N/m)                                | 13200 7300                     |
| TEMPERATURE OF OPERATION (°C)<br>in air<br>in hot water | - 40 to + 80<br>+ 65 + 105     |
| WEIGHT (Kg/m <sup>2</sup> )<br>1505<br>1506             | 6,24 4,52<br>5,35 3,87         |
| Pin material                                            | WHT polypropylene (white)      |

 $\star$  = Values for a belt width of 1 m, at +20°C.

Pin retention : with plugs.

Available on request other materials and colours.



## Single Module Dynamic Transfer System™ left for 1505 - 1506



Material characteristics : see page 12.1-13.1. Mounting instruction : see page 83



## SPROCKETS for 1505 - 1506

NS 1500 - split execution - round bore





NS 1500 - split execution - square bore



Not recommended for chains K 4,5 (114,3 mm) KUS 1500 - split execution



| on request |    |
|------------|----|
|            |    |
|            | 40 |
|            |    |

Д.D.

Grub screw





Single Module Dynamic Transfer System™ right for 1505 - 1506



W=159.8 ŧ Dynamic Transfer System™

**Mat Top**<sup>®</sup>

Pitch

5

Pitch Outside Bore No of teeth dia. dia. dia. Code Rexnord Nr. 7 Dp De Df Weight actual effective mm mm mm kg 0,24 NS 1500 T24 R... 24 24 114,92 116 25-30-35-40 NS 1500 T32 R... 32 32 153,03 25-30-35-40 155 0,32

Material : reinforced polyamid PA FV (black)

Seat keyway : UNI 6604 - 69. See page 77

Material characteristics / mounting instruction : see page 77 - 81

| Code<br>Rexnord<br>Nr. | No.<br>of tee<br>Z<br>actual et | th | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Square<br>bore<br>B<br>mm | Weight<br>kg |
|------------------------|---------------------------------|----|---------------------------|-----------------------------|---------------------------|--------------|
| NS 1500 T24 S          | 24                              | 24 | 114,92                    | 116                         | 40x40                     | 0,24         |
| NS 1500 T32 S          | 32                              | 32 | 153,03                    | 155                         | 40x40-60x60-90x90         | 0,32         |

Material : reinforced polyamid PA FV (black).

Material characteristics / mounting instruction : see page 77 - 81

| Code<br>Rexnord<br>Nr. | of t | lo.<br>eeth<br>Z<br>effective | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | e Bore<br>dia.<br>Df<br>mm | Weight<br>kg |  |
|------------------------|------|-------------------------------|---------------------------|-----------------------------|----------------------------|--------------|--|
| KUS 1500 T24 R         | 24   | 24                            | 114,92                    | 116                         | 20•-25-30-35-40            | 0,34         |  |

= Plain bore without seat keyway.

Material : polyamid PA (white). Seat keyway : UNI 6604 - 69. See page 77.

Material characteristics / mounting instruction : see page 77 - 81

#### Example of codenumber: NS 1500 T24 R30 (including bore)

#### **SPROCKETS** for 1505 - 1506 **Mat Top**<sup>®</sup>



#### **CHAINS AND** ACCESSORIES







#### Pitch Series

1505 1506

| Code<br>Rexnord<br>Nr. | No.<br>of teeth<br>Z<br>actual effective |    | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Bore<br>dia.<br>Df<br>mm | Weight<br>kg |
|------------------------|------------------------------------------|----|---------------------------|-----------------------------|--------------------------|--------------|
| KU 1500 T12 R19        | 12                                       | 12 | 57,96                     | 58,3                        | 19 <sup>H13</sup>        | _            |
| KU 1500 T16 R19        | 16                                       | 16 | 76,89                     | 77,7                        | 19 <sup>H13</sup>        | -            |

Material : polyamid PA (white). Material characteristics / mounting instruction : see page 77 - 81.

| KU 1500 - | Square bore |
|-----------|-------------|
|-----------|-------------|





| Code<br>Rexnord<br>Nr. | No.<br>of teeth<br>Z<br>actual effective |    | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Square<br>bore<br>B<br>mm | Weight<br>kg |
|------------------------|------------------------------------------|----|---------------------------|-----------------------------|---------------------------|--------------|
| KU 1500 T12 S 25       | 12                                       | 12 | 57,96                     | 58,3                        | 25                        | -            |
| KU 1500 T16 S40        | 16                                       | 16 | 76,89                     | 77,7                        | 40                        | -            |

Material : polyamid PA (white). Material characteristics / mounting instruction : see page 77 - 81.

# Rex<sup>®</sup> 8500 Chain

#### Product side transfer with chain Series 1050









#### 90° turns with Single Module Dynamic Transfer System™



#### Ideal for mass conveying.

No deadplates, completely self-clearing. Rex Dynamic Transfer System<sup>™</sup> offers a new way to make 90° transfers and eliminates tipping, product hang-up and conveyor jams while protecting product against severe impact.

#### Retrofit from TableTop® to MatTop® conveyors

Moulded to width 8500 Series chains allow easy retrofit from TableTop® to MatTop® conveyors. Compared to traditional TableTop® the chains Series 8500 have better flatness, higher allowable pull (the hinge is wider), and shorter pitch (19,05 mm instead of 38,1 mm)



Note : carefully check all guide clearances before start up

#### рітсн **19,05** SERIES 8505-8506

8506 PERFORATED TOP Strongest chain in its class The small pitch of 19,05 mm reduces the cordal effect and permits the use of very short transfer plates. Radiused outside edges for better side transfers and increased product handling. Pins are locked with patented "Twist Lock™" system.

#### CHAIN WIDTH ß see page 66

MATERIAL CHARACTERISTICS

see page 12.1-13.1

# ENGINEERING INFORMATION

Chain pull calculations: see page 70 Guide rail and catenary: see page 73 - 76 Mounting instructions: see page 85 Chemical resistance : see page 86

## Pitch

19,05 mm (3/4") 8505 (2%) Open area

> Material approved for direct contact with food products.

8506 (22%)

#### Applications

FDA

For retrofit application, Rex® 8500 chain has the same thickness as Rex<sup>®</sup> 5935, 5936 and 2100 chains. Designed for retrofit of existing TableTop<sup>®</sup> conveyors with 85 mm chain centers. It can also replace similar size competitive belts.

#### 8505 - 8506



BB

New TwistLock<sup>™</sup> hinged plug prevents plug loss, allows easy pin access.



| Standard materials                                      | HP                   | WHT                            | WLT                           |
|---------------------------------------------------------|----------------------|--------------------------------|-------------------------------|
|                                                         | High performance     | Polypropylene                  | Polyethylene                  |
| Colour                                                  | Grey                 | White                          | White                         |
| Nominal strength * (N/m)                                | 29000                | 16000                          | 10600                         |
| TEMPERATURE OF OPERATION (°C)<br>in air<br>in hot water | - 40 to + 80<br>+ 65 | + 5 to + 105<br>+ 105          | -70 to + 25<br>-              |
| WEIGHT (Kg/m <sup>2</sup> )<br>8505<br>8506             | 9,04<br>8,30         | -                              |                               |
| Pin material                                            | Polyester<br>(white) | WHT polypro-<br>pylene (white) | WLT polyethy-<br>lene (white) |

★ = Values for a belt width of 1 m, at +20°C.
 Pin retention : "Twist Lock™" system.
 Available on request other materials and colours.

## Moulded to width chains

Without TAB guide

| 8505 - 8506 without TAB    |       |  |  |  |  |  |  |
|----------------------------|-------|--|--|--|--|--|--|
| Chain<br>width<br><b>K</b> |       |  |  |  |  |  |  |
| mm                         | inch  |  |  |  |  |  |  |
| 82,6                       | 3 1/4 |  |  |  |  |  |  |
| 85 –                       |       |  |  |  |  |  |  |
| 114,3                      | 4 1/2 |  |  |  |  |  |  |
| 190,5                      | 7 1/2 |  |  |  |  |  |  |

#### With TAB guide

|            | - | K    |
|------------|---|------|
| ۲ <u>8</u> |   |      |
| m. +       |   | 38,1 |
| ~          | L | 43,7 |

| 8505 - 8506 with TAB |                |      |  |  |  |  |  |  |
|----------------------|----------------|------|--|--|--|--|--|--|
|                      | Chain<br>width |      |  |  |  |  |  |  |
|                      | (              | L    |  |  |  |  |  |  |
| mm                   | inch           | mm   |  |  |  |  |  |  |
| 82,6                 | 3 1/4          | 19,4 |  |  |  |  |  |  |
| 85                   | -              | 20,7 |  |  |  |  |  |  |
| 114,3                | 4 1/2          | 35,3 |  |  |  |  |  |  |
| 190,5                | 7 1/2          | 73,4 |  |  |  |  |  |  |

#### Single Module Dynamic Transfer System<sup>™</sup> for 8505 - 8506



Available only with surface of Series 8505



Material : HP<sup>™</sup> High Performance (grey). Material characteristics : see page 12.1-13.1. Mounting instruction : see page 83.

8505 Single Module DTS SX K 4,5

## **SPROCKETS** for 8505 - 8506

NS 8500 - Spil execution - Round bore



Grub screw on request Т. Ďf 39

NS 8500 - Spil execution - Square bore





| Code<br>Rexnord<br>Nr. | of t | lo.<br>eeth<br>Z<br>effectiv | Pitch<br>dia.<br>Dp<br>e mm | Outside<br>dia.<br>De<br>mm | Bore<br>dia.<br>Df<br>mm | Weight<br>kg |
|------------------------|------|------------------------------|-----------------------------|-----------------------------|--------------------------|--------------|
| NS 8500 T17 R          | . 17 | 17                           | 104,65                      | 105,4                       | 25-30-35                 | 0,21         |
| NS 8500 T21 R          | 21   | 21                           | 129,0                       | 130,0                       | 25-30-35-40              | 0,41         |
| NS 8500 T24 R          | . 24 | 24                           | 147,34                      | 148,3                       | 25-30-35                 | -            |
| NS 8500 T25 R          | . 25 | 25                           | 153,44                      | 154,7                       | 25-30-35                 | -            |

Material : reinforced polyamid PA FV (black).

Seat keyway : UNI 6604 - 69. See page 77. Material characteristics / mounting instruction : see page 77 - 81.

| Code<br>Rexnord<br>Nr. | of t | lo.<br>eeth<br>Z<br>effective | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Square<br>bore<br>B<br>mm | Weight<br>kg |
|------------------------|------|-------------------------------|---------------------------|-----------------------------|---------------------------|--------------|
| NS 8500 T17 S          | 17   | 17                            | 104,65                    | 105,4                       | 25x25-30x30-35x35         | 0,21         |
| NS 8500 T21 S          | 21   | 21                            | 129,0                     | 130,0                       | 25x25-40x40-60x60         | 0,41         |
| NS 8500 T24 S          | 24   | 24                            | 147,34                    | 148,3                       | 25x25-30x30-35x35         | -            |
| NS 8500 T25 S          | 25   | 25                            | 153,44                    | 154,7                       | 25x25-30x30-35x35         | -            |

Material : reinforced polyamid PA FV (black).

Material characteristics / mounting instruction : see page 77 - 81.

Flights for 8505 - 8506



On request other heights can be supplied.

Material characteristics : see page 12.1-13.1.

#### TAB guide for 8505 - 8506



Material characteristics : see page 12.1-13.1.

(white) WLT 8505 F3



8505 8506

**CHAINS AND** ACCESSORIES

Series

Pitch

**Mat Top**<sup>®</sup>

#### SERIES 5935 - 5936 - 5935 Vacuum **РІТСН 19,05**

Chains EDTOR for lightmedium loads. The small pitch of 19,05 mm reduces the cordal effect and permits the use of very short transfer plates. Closed hinges. Smooth module edges. Pins are locked in place by means of removable plugs. The sprockets with Z 10 (Pitch diam. 62,23 mm) reduce the transfer distances between two conveyor heads.

#### ß see page 61

MATERIAL

CHAIN

WIDTH

CHARACTERISTICS see page 12.1-13.1

#### ENGINEERING INFORMATION

Chain pull calculations: see page 70 Guide rail and catenary: see page 73-76 Mounting instructions: see page 85 Chemical resistance : see page 86

#### Pitch 19,05 mm (3/4")

5935 (5%) Open area

## 5936 (16%) 5935 Vacuum (8%)

HP and HT materials FDA approved for direct contact with food products.

#### Applications

Standard materials

Nominal strength \* (N/m)

TEMPERATURE OF OPERATION (°C)

Colour

in air

5935

5936

in hot water

WEIGHT (Kg/m<sup>2</sup>)

5935 Vacuum Pin material

Conveyor and accumulation systems for PET bottles and cans. Vacuum type conveyor systems (5935 vacuum). Conveyors in the pharmaceutical and cosmetic industry. Conveyors in the packaging industry.









19.05



HP™\*\*

High performance

Grey

13100

40 to + 80

+ 65

5,90

WHT polypropylene (white)

I F

Acetal

Light brown

13100

- 40 to + 80

+ 65

6,40

5,90

6,40

ΗT

Polypropylene

Beige

7300

+ 5 to + 105

+ 105

4,92

4,42

4,92

#### Maximum recommended working load- Fmax





\* = Values for a belt width of 1 m, at +20°C.

\*\* = Available only for series 5936.

Pin retention : with plugs or hotformed heads.

Available on request other materials and colours.

#### Single Module Dynamic Transfer System™ left for 5935 - 5936



| Code                                                       | G                              | uide widt | h Guide wic | lth                            |
|------------------------------------------------------------|--------------------------------|-----------|-------------|--------------------------------|
| Rexnord                                                    | W                              | GC        | CC          |                                |
| Nr.                                                        | mm                             | mm        | mm          | Material                       |
| LF 5936 Single Module DTS S<br>HP 5936 Single Module DTS S | <b>x</b><br>x <sup>159,8</sup> | 162,9     | 50,7        | LF (light brown)<br>HP™ (grey) |

Material characteristics : see page 12.1-13.1. Mounting instruction : see page 83.



### Flights for 5935 - 5936



| Code<br>Rexnord<br>Nr.   | H<br>mm | Material                                            |
|--------------------------|---------|-----------------------------------------------------|
| LF 5935 F1<br>HT 5935 F1 | 25      | LF acetal (light brown)<br>HT polypropylene (beige) |

On request other heights can be supplied. Material characteristics : see page 12.1-13.1.

#### Side guards for 5935 - 5936



Material characteristics : see page 12.1-13.1.

#### Single Module Dynamic Transfer System™ right for 5935 - 5936



| LF 5936 Single Module DTS DX 159,8 162,9 50,7 LF HP 5936 Single Module DTS DX |                           |
|-------------------------------------------------------------------------------|---------------------------|
|                                                                               | (light brown)<br>™ (grey) |

Material characteristics : see page 12.1-13.1. Mounting instruction : see page 83.



#### TAB guide for 5935 - 5936 - 5935 vacuum



Material characteristics : see page 12.1-13.1.

#### Transfer plates for 5935 - 5936



Material characteristics : see page 12.1-13.1.

27



5935 5936 5935

vacuum











#### рітсн 25,4 series 7705 - 7706

Chains for medium-high loads. Patented material "HP™ High performance" with reduced coefficient of friction. The small pitch reduces the cordal action. Closed hinges. Smooth and rounded edges. Pins are locked with patented "Twist Lock™" system. New "Dynamic Transfer System™" for 90° transfer without the use of a transfer plate.

#### 13 WIDTH

see page 65

MATERIAL CHARACTERISTICS see page 12.1-13.1

# ENGINEERING INFORMATION

Chain pull calculations: see page 70 Guide rail and catenary: see page 73-76 Mounting instructions: see page 85 Chemical

resistance : see page 86

#### CHAIN Pitch

# 25,4 mm (1")

7705 (3%) Open area 7706 (8%)



with food products. Applications

Standard mater

Colour TEMPERATURE OF in air in hot water Pin material

High speed conveyors. Low product pressure conveyors. Conveyor for glass (cold). Conveyors and accumulation tables for aluminium cans. Conveyors, where forced lubrifica-tion is not permitted.

## Æ 12,7

7705 - 7706



#### Maximum recommended working load - Fmax



#### Chainwidth assembled with multi modules (brick assembly)

|                  |                      |              | Series                         |
|------------------|----------------------|--------------|--------------------------------|
| erials           | HP™                  | WHP™         | 7705 HP - WHF<br>7706 HP - WHF |
|                  | High per             | formance     |                                |
|                  | Grey                 | White        | Chains with m                  |
| F OPERATION (°C) | - 40 to + 80<br>+ 65 | - 40 to + 80 | Width<br>mm inc                |
|                  | + 65                 | + 65         |                                |
|                  |                      |              | 007 / 01                       |

WHT polypropylene (white)

#### Kg/m<sup>2</sup> N/m

| 561165                   | Rg/III         | 11/111         | <ul> <li>Malusa far a halt</li> </ul>                                  |
|--------------------------|----------------|----------------|------------------------------------------------------------------------|
| 5 HP - WHP<br>6 HP - WHP | 13,56<br>13,27 | 43040<br>43040 | <ul> <li>Values for a belt<br/>width of 1 m, at<br/>+ 20°C.</li> </ul> |
|                          |                |                |                                                                        |

Ave strength\*

#### nodules moulded to width

Weight

| - |       |       | 7705 Weight | HP - WHP     | 7706<br>Weight | HP - WHP<br>Ave strength |
|---|-------|-------|-------------|--------------|----------------|--------------------------|
|   | VV    | idth  | weigin      | Ave strength | weigin         | Ave strength             |
|   | mm    | inch  | Kg/m        | Ν            | Kg/m           | Ν                        |
| - | 82,6  | 3 1/4 | 1,03        | 3050         | 1,00           | 3050                     |
|   | 114,3 | 4 1/2 | 1,42        | 4560         | 1,39           | 4560                     |
| - | 152,4 | 6     | 1,90        | 6560         | 1,85           | 6560                     |
|   | 190,5 | 7 1/2 | 2,58        | 7785         | 2,52           | 7785                     |
|   | 381.0 | 15    | 5,15        | 15120        | 5,05           | 15120                    |

**Pin retention :** "Twist Lock<sup>™</sup>"system.

Available on request other materials and colours.

#### Single Module Dynamic Transfer System<sup>™</sup> for 7705 - 7706



Material characteristics : see page 12.1-13.1. Mounting instruction : see page 83.

| Two-Piece Dy                    | /namic            | Trans   | sfer Syst           | tem™ fo                 | or 7705 - 7706                         |                  |       |
|---------------------------------|-------------------|---------|---------------------|-------------------------|----------------------------------------|------------------|-------|
| 45,2<br>Flight                  |                   |         | ا<br>Right-<br>Hand |                         | ght                                    | CHAINS<br>ACCESS |       |
| r                               | hain width K      | - 1     | 1 É                 | hain width K            | 45,2                                   | Series           | Pitch |
|                                 |                   |         |                     |                         |                                        |                  |       |
| Flight                          |                   |         | W                   |                         | Flight                                 |                  |       |
|                                 | Chain             | width K | <u> </u>            | 45,2                    | <b>-</b>                               |                  |       |
| 12,7                            |                   |         |                     | Fligh                   | it                                     |                  |       |
| Code<br>Rexnord<br>Nr.          | Cha<br>widt<br>mm |         | W                   | Guide width<br>GC<br>mm | Material                               |                  |       |
| Chains with mod                 | lules mou         | Ided t  | o width             |                         |                                        |                  |       |
| DTS HP K 3,25<br>DTS WHP K 3,25 | 82,6              | 3 1/4   | 127,8               | 130,9                   | HP™ (grey)<br>WHP™ (white)             |                  |       |
| DTS HP K 4,5<br>DTS WHP K 4,5   | 114,3             | 4 1/2   | 159,5               | 162,7                   | HP™ (grey)<br>WHP™ (white)             |                  |       |
| DTS HP K6<br>DTS WHP K6         | 152,4             | 6       | 197,6               | 200,8                   | HP™ (grey)<br>WHP™ (white)             |                  |       |
| DTS HP K 7,5<br>DTS WHP K 7,5   | 190,5             | 7 1/2   | 235,7               | 238,9                   | HP™ (grey)<br>WHP™ (white)             |                  |       |
| DTS HP K 15<br>DTS WHP K 15     | 381,0             | 15      | 426,2               | 429,4                   | HP™ (grey)<br>WHP™ (white)             |                  |       |
| Chainwidth asse                 | mbled wi          | th mu   | ti module:          | s (brick ass            |                                        |                  |       |
| DTS HP K<br>DTS WHP K           | See pag           | e 66    | K+45,2              | K+48,4                  | HP <sup>™</sup> (grey)<br>WHP™ (white) |                  |       |
|                                 |                   |         |                     |                         |                                        |                  |       |

Material characteristics : see page 12.1-13.1.

Mounting instruction : see page 83.

## **SPROCKETS** for 7705 - 7706

NS 7700 - split execution



KUS 7700 ML - split execution



**DD** 19 51 Ø В 19 19

0 ප

U Df

| Code<br>Rexnord<br>Nr.         | No.<br>of teeth<br>Z<br>actual effective | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Bore<br>dia.<br>Df<br>mm   | Weight<br>kg |
|--------------------------------|------------------------------------------|---------------------------|-----------------------------|----------------------------|--------------|
| NS 7700 T16 R                  |                                          | 130,20                    | 130,6                       | 25-30-35-40                | 0,33         |
| NS 7700 T18 R<br>NS 7700 T21 R |                                          | 146,28<br>170,43          | 146,9<br>170,7              | 25-30-35-40<br>25-30-35-40 | 0,38<br>0,44 |

Material : reinforced polyamid PA FV (black). Seat keyway : UNI 6604 - 69. See page 77. Material characteristics / mounting instruction : see page 77-81

| Code<br>Rexnord<br>Nr. | oft   | lo.<br>eeth<br>Z<br>effective | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Square<br>bore<br>B<br>mm | Weight<br>kg |
|------------------------|-------|-------------------------------|---------------------------|-----------------------------|---------------------------|--------------|
| KUS 7700 T16 S         | 40 16 | 16                            | 130,20                    | 130,6                       | 40x40                     | _            |
| KUS 7700 T18 S         | 18    | 18                            | 146,28                    | 146,9                       | 40x40-50x50               | -            |
| KUS 7700 T21 S         | 21    | 21                            | 170,43                    | 170,7                       | 40x40-50x50-60x60         | -            |

Material : polyamid PA (white). Material characteristics / mounting instruction : see page 77-81

| Code<br>Rexnord<br>Nr. | of t | lo.<br>eeth<br>Z<br>effective | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Square<br>bore<br>B<br>mm | Weight<br>kg |
|------------------------|------|-------------------------------|---------------------------|-----------------------------|---------------------------|--------------|
| KU 7700 T16 S50        | 16   | 16                            | 130,20                    | 130,6                       | 50x50                     | _            |
| KU 7700 T18 S          | 18   | 18                            | 146,28                    | 146,9                       | 50x50-60x60               | -            |
| KU 7700 T21 S          | 21   | 21                            | 170,43                    | 170,7                       | 50x50-60x60-65x65         | _            |
| KU 7700 T25 S50        | 25   | 25                            | 202,66                    | 204,2                       | 50x50                     | -            |

Material : polyamid PA (white).

Material characteristics / mounting instruction : see page 77-81

#### Example of codenumber: NS 7700 T18 R30 (including bore)

**Mat Top**<sup>®</sup>

7705 25,4

7706





KU 7700 ML



#### **SERIES 2100** рітсн 25,4

Chains for lightmedium loads. The small pitch reduces the cordal effect and permits the use of very short transfer plates. Smooth module edges. Pins are locked in place by means of removable plugs. The sprockets with Z 6,5 (Pitch diam. 54,66 mm) reduce the transfer distances between two conveyor heads

# 13

see page 56

MATERIAL CHARACTERISTICS see page 12.1-13.1

#### ENGINEERING INFORMATION Chain pull calculations: see page 70 Guide rail and catenary: see page 73-76 Mounting

instructions: see page 85 Chemical resistance : see page 86

| CHAIN<br>WIDTH | Pitch |
|----------------|-------|
|                |       |

## 25,4 mm (1")

44% Open area





meat and poultry.

WHT material appro-

### Applications

Conveyors with empty cans. Accumulation systems for cardboard and packaging. Conveyors for dryers in the food industry.



#### Maximum recommended working load- Fmax



| Standard materials                                      | LF WHT                                  |
|---------------------------------------------------------|-----------------------------------------|
|                                                         | Acetal Polypropylene                    |
| Colour                                                  | Light brown White                       |
| Nominal strength * (N/m)                                | 16100 7300                              |
| TEMPERATURE OF OPERATION (°C)<br>in air<br>in hot water | - 40 to + 80 + 5 to + 105<br>+ 65 + 105 |
| Weight (Kg/m <sup>2</sup> )                             | 4,84 3,70                               |
| Pin material                                            | WHT polypropylene (white)               |

\* = Values for a belt width of 1 m, at +20°C.

Pin retention : with plugs (LF 2100), hotformed heads (WHT 2100). Available on request other materials and colours.



## ACCESSORIES for 2100

### Flights



On request other heights can be supplied. Material characteristics : see page 12.1-13.1.

## **Transfer plates**



Material characteristics / mounting instruction : see page 82.

## SPROCKETS for 2100

NS 2100 - split execution



N 2100 - round bore



N 2100 - square bore





B

De



| N 2100 T19 S40 | <b>19</b> 19          | 154,33        | 154,9           | 40x40          | 0,18         |
|----------------|-----------------------|---------------|-----------------|----------------|--------------|
| Rexnord<br>Nr. | Z<br>actual effective | Dp<br>mm      | De<br>mm        | B<br>mm        | Weight<br>kg |
| Code           | No.<br>of teeth       | Pitch<br>dia. | Outside<br>dia. | Square<br>bore |              |

Material : reinforced polyamid PA FV (black). Material characteristics / mounting instruction : see page 77-81

| Code<br>Rexnord<br>Nr. | of t | lo.<br>eeth<br>Z<br>effective | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Bore<br>dia.<br>Df<br>mm | Weight<br>kg |
|------------------------|------|-------------------------------|---------------------------|-----------------------------|--------------------------|--------------|
| N 2100 T19 R           | 19   | 19                            | 154,33                    | 154,9                       | 25-30-35-40              | 0,21         |

Material : acetal (black). Seat keyway : UNI 6604 - 69. See page 77. Material characteristics / mounting instruction : see page 77-81

| Code<br>Rexnord<br>Nr. | N<br>of te<br>actual |     | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Square<br>bore<br>B<br>mm | Weight<br>kg |
|------------------------|----------------------|-----|---------------------------|-----------------------------|---------------------------|--------------|
| N 2100 T13 S25         | 13                   | 6,5 | 54,66                     | 53,2                        | 25x25                     | 0,01         |
| N 2100 T11 S           | 11                   | 11  | 90,17                     | 88,9                        | 25x25-40x40               | 0,07         |
| N 2100 T19 S           | 19                   | 19  | 154,33                    | 154,9                       | 40x40-65x65               | 0,18         |

Material : acetal (black). Material characteristics / mounting instruction : see page 77-81

Example of codenumber: N 2100 T19 R30 (including bore)

**CHAINS AND** 

**Mat Top**<sup>®</sup>

ACCESSORIES

Series Pitch



#### CHAIN WIDTH see page 57

MATERIAL CHARACTERISTICS see page 12.1-13.1

> ENGINEERING INFORMATION Chain pull calculations: see page 70 Guide rail and catenary: see page 73-76

> > Mounting instructions: see page 85 Chemical

resistance : see page 86

#### 38,1 mm (11/2")

4705 (2%) 4706 (22%) 4707 (23%) 4705 Vacuum (5%)



#### Applications

Pitch

Open area

Replacement and/or conversion of multi-lane chain conveyors equipped with Table Top® conveyor chains. Accumulation tables. Elevators. Small and medium pasteurizers. (HT 4707). Vacuum invertors.

#### 4705 - 4706









| Standard materials                                                 | LF                            | HT                           |  |
|--------------------------------------------------------------------|-------------------------------|------------------------------|--|
|                                                                    | Acetal                        | Polypropylene                |  |
| Colour                                                             | Light brown                   | Beige                        |  |
| Nominal strength * (N/m)                                           | 17500                         | 8750                         |  |
| TEMPERATURE OF OPERATION (°C)<br>in air<br>in hot water            | - 40 to + 80<br>+ 65          | + 5 to + 105<br>+ 105        |  |
| WEIGHT (Kg/m <sup>2</sup> )<br>4705<br>4706<br>4707<br>4705 Vacuum | 9,14<br>7,96<br>10,45<br>9,14 | 6,19<br>5,50<br>6,93<br>6,19 |  |
| Pin material                                                       | <br>Acetal (black)            |                              |  |

\* = Values for a belt width of 1 m, at +20°C.

Pin retention : hotformed heads (4705-4706-4705 Vaccum); with plugs (4707). Available on request other materials and colours.

#### Maximum recommended working load- Fmax




### Flights for 4705 - 4706



On request other heights can be supplied.

Material characteristics : see page 12.1-13.1.

Side guards for 4705 - 4706



Comb 4707 187 R



Mat Top<sup>®</sup>

### **CHAINS AND** ACCESSORIES

Series Pitch

D

mm

50,8

64,1

89,5

Material : reinforced polyamid PA FV (black). For L 146 : white acetal. Supplied with screws M6 in stainless steel and plugs (clip-in) for the slotted holes

187

Material characteristics / mounting instruction : see page 82.

### Transfer plates for 4705 - 4706 - 4705 vacuum



| Code<br>Rexnord<br>Nr.                     | K<br>mm inch                      | Material          |
|--------------------------------------------|-----------------------------------|-------------------|
| Transfer plate K 06<br>Transfer plate K 12 | <b>152,4</b> 6<br><b>304,8</b> 12 | LF acetal (white) |

Material characteristics : see page 12.1-13.1.

6

### SPROCKETS for 4705 - 4706 - 4707 - 4705 vacuum

-6

Execution

Right Left

NS 4700 - split execution

Code Rexnord Nr.

Side guard 4700 DX

Side guard 4700 SX



NS 5700 - split execution



NS 5700 - split execution





Material

WHT polypropylene (white)

| 15,9<br>41,3 |
|--------------|

Df

| Code<br>Rexnord<br>Nr.                          | of t | No.<br>:eeth<br>Z<br>effective | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Bore<br>dia.<br>Df<br>mm                           | L<br>mm | Weight<br>kg         |
|-------------------------------------------------|------|--------------------------------|---------------------------|-----------------------------|----------------------------------------------------|---------|----------------------|
| NS 4700 T21 R<br>NS 4700 T23 R<br>NS 4700 T25 R | 23   | 11,5                           | 141,22                    | 142                         | 25-30-35-40-45<br>25-30-35-40-45<br>25-30-35-40-45 | 51      | 0,46<br>0,54<br>0,63 |

Material characteristics : see page 12.1-13.1.

Material : reinforced polyamid PA FV (black). Seat keyway : UNI 6604 - 69. See page 77. Material characteristics / mounting instruction : see page 77-81

| Code<br>Rexnord<br>Nr. | of t | lo.<br>eeth<br>Z<br>effective | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Bore<br>dia.<br>Df<br>mm | Weight<br>kg |
|------------------------|------|-------------------------------|---------------------------|-----------------------------|--------------------------|--------------|
| NS 5700 T24 R          | 24   | 12                            | 147,22                    | 148,1                       | 25-30-35                 | 0,46         |

Material : reinforced polyamid PA FV (black). Seat keyway : UNI 6604 - 69. See page 77. Material characteristics / mounting instruction : see page 77-81

| Code<br>Rexnord<br>Nr. | of t | lo.<br>eeth<br>Z<br>effective | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Bore<br>dia.<br>Df<br>mm | L<br>mm | Weight<br>kg |
|------------------------|------|-------------------------------|---------------------------|-----------------------------|--------------------------|---------|--------------|
| NS 5700 T21 R          | 21   | 10,5                          | 129,26                    | 129,5                       | 25-30-35-40-45           | 51      | 0,46         |
| NS 5700 T23 R          | 23   | 11,5                          | 141,22                    | 142                         | 25-30-35-40-45           | 51      | 0,54         |
| NS 5700 T25 R          | 25   | 12,5                          | 153,21                    | 154,2                       | 25-30-35-40-45           | 58,5    | 0,63         |

Material : reinforced polyamid PA FV (black). Seat keyway : UNI 6604 - 69. See page 77. Material characteristics / mounting instruction : see page 77-81

### Example of codenumber: NS 4700 T23 R30 (including bore)

ഷ

18

4705

### SPROCKETS for 4705 - 4706 - 4707 - 4705 vacuum **Mat Top**<sup>®</sup>

N 4700 - round bore

### **CHAINS AND ACCESSORIES**

Series

Pitch





N 4700 - square bore



KU 4700 - with centre groove



KU 4700



| $\bigoplus$ |  |
|-------------|--|
| Df          |  |

| Code<br>Rexnord<br>Nr. | of t | lo.<br>eeth<br>Z<br>effective | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Bore<br>dia.<br>Df<br>mm | L<br>mm | Weight<br>kg |
|------------------------|------|-------------------------------|---------------------------|-----------------------------|--------------------------|---------|--------------|
| N 4700 T17 R           | 17   | 8,5                           | 105,48                    | 104,7                       | 25-30                    | 48      | 0,22         |
| N 4700 T19 R           | 19   | 9,5                           | 117,35                    | 117,1                       | 25-30                    | 50      | 0,35         |

Material : reinforced polyamid PA FV (black). Seat keyway : UNI 6604 - 69. See page 77. Material characteristics / mounting instruction : see page 77-81

| Code<br>Rexnord<br>Nr.         | of t | lo.<br>eeth<br>Z<br>effective | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Square<br>bore<br>B<br>mm  | Weight<br>kg |
|--------------------------------|------|-------------------------------|---------------------------|-----------------------------|----------------------------|--------------|
| N 4700 T12 S<br>N 4700 T21 S65 |      |                               | 147,22<br>255,62          | 146<br>256                  | 40x40-50x50-65x65<br>65x65 | 0,22<br>0,35 |

Material : acetal (black).

Material characteristics / mounting instruction : see page 77-81

| Code<br>Rexnord<br>Nr. | of t | No.<br>eeth<br>Z<br>effective | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Bore<br>dia.<br>Df<br>mm | Df<br>max<br>mm | Weight<br>kg |
|------------------------|------|-------------------------------|---------------------------|-----------------------------|--------------------------|-----------------|--------------|
| KU 4700 T25 R20        | 25   | 12,5                          | 153,21                    | 153,5                       | 20 <sup>H7</sup>         | 80              | 0,74         |

Material : polyamid PA (black). Material characteristics / mounting instruction : see page 77-81

| Code<br>Rexnord<br>Nr. | of t | lo.<br>eeth<br>Z<br>effective | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Bore<br>dia.<br>Df<br>mm | Df<br>max<br>mm | Weight<br>kg |
|------------------------|------|-------------------------------|---------------------------|-----------------------------|--------------------------|-----------------|--------------|
| KU 4700 T12 R20        | 12   | 12                            | 147,22                    | 146                         | 20 <sup>H7</sup>         | 70              | _            |

Material : polyamid PA (black).

Material characteristics / mounting instruction : see page 77-81

 $\forall$ Df 47,6

# SERIES 5705-5706 PITCH 38,1

5106 TOP Chains for medium loads. Patented material "HP™ High performance" with reduced coefficient of friction. New chain edge design. Curved module edges provide improved side transfer of products. Increased surface area on chain bottom. Greater sliding surface wear life.

### 13

WIDTH see page 61

CHAIN

MATERIAL CHARACTERISTICS see page 12.1-13.1

### ENGINEERING INFORMATION Chain pull calculations:

see page 70 Guide rail and catenary: see page 73-76 Mounting instructions see page 85 Chemical

resistance : see page 86

### Pitch

## 38,1 mm (11/2")

5705 (2%) Open area 5706 (22%)





### Applications

Brewing and soft drinks industries.

### 5705 - 5706



### Maximum recommended working load - Fmax



### Chainwidth assembled with multi modules (brick assembly)

Ave strength\*

N/m

17500

17500

Values for a belt

width of 1 m, at

+ 20°C.

|    |              |              | Series Kg/          | /m <sup>2</sup> |
|----|--------------|--------------|---------------------|-----------------|
|    | НР™          | WHP™         |                     | 14<br>96        |
|    | High perf    | formance     |                     |                 |
|    | Grey         | White        | Chains with modules | mo              |
| 2) | - 40 to + 80 | - 40 to + 80 |                     | 5<br>eigh       |

| Chains | with m | nodules r | noulded | to width |  |
|--------|--------|-----------|---------|----------|--|

Weight

| chains with modules moduled to width |       |        |              |        |              |  |  |  |  |
|--------------------------------------|-------|--------|--------------|--------|--------------|--|--|--|--|
|                                      |       | 5705   | HP - WHP     | 5706   | HP - WHP     |  |  |  |  |
| W                                    | idth  | Weight | Ave strength | Weight | Ave strength |  |  |  |  |
| mm                                   | inch  | Kg/m   | Ν            | Kg/m   | N            |  |  |  |  |
| 82,6                                 | 3 1/4 | 0,79   | 1870         | 0,75   | 1870         |  |  |  |  |
| 114,3                                | 4 1/2 | 1,09   | 1870         | 1,03   | 1870         |  |  |  |  |
| 152,4                                | 6     | 1,46   | 2670         | 1,37   | 2670         |  |  |  |  |
| 190,5                                | 7 1/2 | 1,82   | 3560         | 1,71   | 3560         |  |  |  |  |
| 381,0                                | 15    | 3,67   | 7100         | 3,46   | 7100         |  |  |  |  |

### Standard materials Colour TEMPERATURE OF OPERATION (°C) in air in hot water + 65 + 65 Pin material WHT polypropylene (white)

### Pin retention : with plugs.

Available on request other materials and colours.

### ACCESSORIES for 5705 - 5706

### Transfer plates for 5705 - 5706



### **SPROCKETS** for 5705 - 5706

NS 5700 - split execution

NS 5700 - split execution

KU 4700



Ë

e

15.9

15.9

47,6

| Code<br>Rexnord<br>Nr.         | of t | lo.<br>eeth<br>Z<br>effective | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Bore<br>dia.<br>Df<br>mm         | L<br>mm | Weight<br>kg |
|--------------------------------|------|-------------------------------|---------------------------|-----------------------------|----------------------------------|---------|--------------|
| NS 5700 T21 R<br>NS 5700 T23 R |      | 10,5<br>11,5                  |                           |                             | 25-30-35-40-45<br>25-30-35-40-45 |         | 0,46<br>0,54 |
| NS 5700 T25 R                  |      | 1 -                           |                           |                             | 25-30-35-40-45                   |         |              |

Κ

mm inch

152,4 6

304,8 12 Material

LF acetal (white)

Material : reinforced polyamid PA FV (black).

Material characteristics : see page 12.1-13.1.

Code Rexnord Nr.

Transfer plate K 06

Transfer plate K 12

Seat keyway : UNI 6604 - 69. See page 77

Material characteristics / mounting instruction : see page 77-81

| Code<br>Rexnord<br>Nr. | of t | lo.<br>eeth<br>Z<br>effective | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Bore<br>dia.<br>Df<br>mm | Weight<br>kg |
|------------------------|------|-------------------------------|---------------------------|-----------------------------|--------------------------|--------------|
| NS 5700 T24 R          | 24   | 12                            | 147,22                    | 148,1                       | 25-30-35                 | 0,46         |

Material : reinforced polyamid PA FV (black). Seat keyway : UNI 6604 - 69. See page 77. Material characteristics / mounting instruction : see page 77-81

| Code<br>Rexnord<br>Nr. | No<br>of tee<br>Z<br>actual e | eth | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Bore<br>dia.<br>Df<br>mm | Df<br>max<br>mm | Weight<br>kg |
|------------------------|-------------------------------|-----|---------------------------|-----------------------------|--------------------------|-----------------|--------------|
| KU 4700 T12 R2         | 0 12                          | 12  | 147,22                    | 146                         | 20 <sup>H7</sup>         | 70              | _            |

Material : polyamid PA (black).

Material characteristics / mounting instruction : see page 77-81

| Code<br>Rexnord<br>Nr.         | No.<br>of teeth<br>Z<br>actual effective |          | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Square<br>bore<br>B<br>mm  | Weight<br>kg |
|--------------------------------|------------------------------------------|----------|---------------------------|-----------------------------|----------------------------|--------------|
| N 4700 T12 S<br>N 4700 T21 S65 |                                          | 12<br>21 | 147,22<br>255.62          | 146<br>256                  | 40x40-50x50-65x65<br>65x65 | 0,22<br>0,35 |
| Material · acetal              |                                          |          | 200,02                    | 200                         | 03/05                      | 0,55         |

Material characteristics / mounting instruction : see page 77-81

Sprockets with centre groove - Not recommended for chains with modules moulded to width K3,25 (82,6 mm) - K4,5 (114,3 mm) - K7,5 (190,5 mm)

NS 4700 - split execution

N 4700 - square bore



N 4700 - round bore



KU 4700 - with centre groove



U Df ŧ 42,9 M8x6 Df De 42.9

Df

B

40

|                |        |             |               |                 | , .            |      |        |
|----------------|--------|-------------|---------------|-----------------|----------------|------|--------|
| Code           |        | lo.<br>eeth | Pitch<br>dia. | Outside<br>dia. | dia.           |      |        |
| Rexnord<br>Nr. | actual | Z effective | Dp<br>mm      | De<br>mm        | Df             | L    | Weight |
| INI.           | actual | enective    | 111111        | 111111          | mm             | mm   | kg     |
| NS 4700 T21 R  | 21     | 10,5        | 129,26        | 129,5           | 25-30-35-40-45 | 51   | 0,46   |
| NS 4700 T23 R  | 23     | 11,5        | 141,22        | 142             | 25-30-35-40-45 | 51   | 0,54   |
| NS 4700 T25 R  | 25     | 12,5        | 153,21        | 154,2           | 25-30-35-40-45 | 58,5 | 0,63   |

Material : reinforced polyamid PA FV (black)

Seat keyway : UNI 6604 - 69. See page 77. Material characteristics / mounting instruction : see page 77-81

| Code<br>Rexnord<br>Nr. | of t | lo.<br>eeth<br>Z<br>effective | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Bore<br>dia.<br>Df<br>mm | L<br>mm | Weight<br>kg |
|------------------------|------|-------------------------------|---------------------------|-----------------------------|--------------------------|---------|--------------|
| N 4700 T17 R           | 17   | 8,5                           | 105,48                    | 104,7                       | 25-30                    | 48      | 0,22         |
| N 4700 T19 R           | 19   | 9,5                           | 117,35                    | 117,1                       | 25-30                    | 50      | 0,35         |

Material : reinforced polyamid PA FV (black). Seat keyway : UNI 6604 - 69. See page 77. Material characteristics / mounting instruction : see page 77-81

| Code<br>Rexnord<br>Nr. | No.<br>of teeth<br>Z<br>actual effective | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Bore<br>dia.<br>Df<br>mm | Df<br>max<br>mm | Weight<br>kg |
|------------------------|------------------------------------------|---------------------------|-----------------------------|--------------------------|-----------------|--------------|
| KU 4700 T25 R2         | <b>20 25</b> 12,5                        | 153,21                    | 153,5                       | 20 <sup>H7</sup>         | 80              | 0,74         |

Material : polyamid PA (black).

Material characteristics / mounting instruction : see page 77-81

Example of codenumber: NS 4700 T23 R30 (including bore)

### **Mat Top**<sup>®</sup>

**CHAINS AND** 

ACCESSORIES

Series Pitch

## SERIES 4812 PITCH 38,1

Chains for light loads. Open hinges. Optimum cleanability of hinges and pins.

### CHAIN WIDTH see page 58

MATERIAL CHARACTERISTICS

CHARACTERISTICS see page 12.1-13.1

### ENGINEERING INFORMATION

Chain pull calculations: see page 70 Guide rail and catenary: see page 73-76 Mounting instructions: see page 85 Chemical resistance : see page 86

| Pitch     | 38,1 mm | (11/2") |
|-----------|---------|---------|
| Open area | 33%     |         |

## 33%



Applications Light duty accumulation tables. Drainage systems and elevators. Conveyors for snacks.



### Maximum recommended working load- Fmax

AST PRATED TOP



| Standard materials                                      | LF HT                                   |
|---------------------------------------------------------|-----------------------------------------|
|                                                         | Acetal Polypropylene                    |
| Colour                                                  | Light brown Beige                       |
| Nominal strength * (N/m)                                | 14600 7300                              |
| TEMPERATURE OF OPERATION (°C)<br>in air<br>in hot water | - 40 to + 80 + 5 to + 105<br>+ 65 + 105 |
| Weight (Kg/m <sup>2</sup> )                             | 6,05 3,90                               |
| Pin material                                            | WHT polypropylene (white)               |

 $\star$  = Values for a belt width of 1 m, at +20°C.

Pin retention : hotformed heads.

Available on request other materials and colours.



### ACCESSORIES for 4812

### Flights



On request other heights can be supplied. Material characteristics : see page 12.1-13.1.

### **Transfer plates**



| Code<br>Rexnord<br>Nr.                     | K<br>mm inch                      | Material          |
|--------------------------------------------|-----------------------------------|-------------------|
| Transfer plate K 06<br>Transfer plate K 12 | <b>152,4</b> 6<br><b>304,8</b> 12 | LF acetal (white) |

Material characteristics / mounting instruction : see page 82.

### SPROCKETS for 4812

N 4802





| Code<br>Rexnord<br>Nr.                       | of te | o.<br>eeth<br><u>Z</u><br>effective | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Square<br>bore<br>B<br>mm | Weight<br>kg |  |  |  |
|----------------------------------------------|-------|-------------------------------------|---------------------------|-----------------------------|---------------------------|--------------|--|--|--|
| N 4802 T12 S                                 | 12    | 12                                  | 147,22                    | 147,3                       | 40x40-65x65               | 0,13         |  |  |  |
| Material - reinforced polyamid DA EV (black) |       |                                     |                           |                             |                           |              |  |  |  |

Material : reinforced polyamid PA FV (black).

Material characteristics / mounting instruction : see page 77-81

KU 4802





| Code<br>Rexnord<br>Nr. | N<br>of te<br>actual | lo.<br>eeth<br>Z<br>effective | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Bore<br>dia.<br>Df<br>mm | Df<br>max<br>mm | Weight<br>kg |
|------------------------|----------------------|-------------------------------|---------------------------|-----------------------------|--------------------------|-----------------|--------------|
| KU 4802 T08 R2         | ) 8                  | 8                             | 99,56                     | 97,4                        | 20 <sup>H7</sup>         | 50              | _            |
| KU 4802 T12 R2         | ) 12                 | 12                            | 147,22                    | 147,3                       | 20 <sup>H7</sup>         | 80              | _            |

Material : polyamid PA (black). Material characteristics / mounting instruction : see page 77-81

4812

### **CHAINS AND** ACCESSORIES

**Mat Top**<sup>®</sup>

Series Pitch



# See Da

### see page 59

MATERIAL CHARACTERISTICS see page 12.1-13.1

### ENGINEERING INFORMATION Chain pull

calculations: see page 70 Guide rail and catenary: see page 73-76

Mounting instructions: see page 85 Chemical

resistance : see page 86

### CHAIN Pitch WIDTH

### Open area 44%



HT material approved for direct contact with food products.

38,1 mm (11/2")

### Applications

Accumulation tables. Medium size conveyors. Small and medium pasteurizers. Packaging systems.



### Maximum recommended working load- Fmax





| Standard materials                                      | LF HT                                   |
|---------------------------------------------------------|-----------------------------------------|
|                                                         | Acetal Polypropylene                    |
| Colour                                                  | Light brown Beige                       |
| Nominal strength * (N/m)                                | 21900 13000                             |
| TEMPERATURE OF OPERATION (°C)<br>in air<br>in hot water | - 40 to + 80 + 5 to + 105<br>+ 65 + 105 |
| Weight (Kg/m <sup>2</sup> )                             | 11,4 7,2                                |
| Pin material                                            | WHT polypropylene (white)               |

 $\star$  = Values for a belt width of 1 m, at +20°C.

Pin retention : hotformed heads.

Available on request other materials and colours.

### ACCESSORIES for 4803

### **Transfer comb**



Supplied with screws M6 in stainless steel and plugs (clip-in) for the slotted holes.

Material characteristics / mounting instruction : see page 82.

### **CHAINS AND** ACCESSORIES

Series Pitch

### SPROCKETS for 4803

N 4803



KU 4803





| Code<br>Rexnord<br>Nr. | of t | lo.<br>eeth<br>Z<br>effective | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Square<br>bore<br>B<br>mm | Weight<br>kg |
|------------------------|------|-------------------------------|---------------------------|-----------------------------|---------------------------|--------------|
| N 4803 T12 S           | 12   | 12                            | 147,22                    | 147,2                       | 40x40-65x65               | 0,19         |
|                        |      |                               |                           |                             |                           |              |

Material : polyethylene PE (black).

Material characteristics / mounting instruction : see page 77-81



| Code<br>Rexnord<br>Nr. | N<br>of te<br>actual | o.<br>eeth<br><u>z</u><br>effective | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Bore<br>dia.<br>Df<br>mm | Df<br>max<br>mm | Weight<br>kg |
|------------------------|----------------------|-------------------------------------|---------------------------|-----------------------------|--------------------------|-----------------|--------------|
| KU 4803 T08 R20        | ) 8                  | 8                                   | 99,56                     | 97,4                        | 20 <sup>H7</sup>         | 50              | _            |
| KU 4803 T12 R20        | ) 12                 | 12                                  | 147,22                    | 147,2                       | 20 <sup>H7</sup>         | 80              | -            |

Material : polyamid PA (black). Material characteristics / mounting instruction : see page 77-81

4803

30,

### Example of codenumber: N 4803 T12 S40x40 (including bore)

### 43

## SERIES 6390-6391-6392 PITCH 50

Chains for medium-high loads. These chains can be supplied with and without tension plates. The tension plates improve the working load of the chain and the dimensional stability. Temperature of operation up to 130 °C (version YSM). Closed hinges. Smooth edges. Pins riveted.

CHAIN RF WIDTH see page 64

MATERIAL CHARACTERISTICS see page 12.1-13.1

> ENGINEERING INFORMATION Chain pull

calculations: see page 71 Guide rail and catenary: see page 73-76 Mounting instructions see page 85 Chemical resistance

see page 86

## Pitch

50 mm (1 31/32") 6390 (2%) Open area 6391 (26%)



### approved for direct contact with food

### Applications

FDA

Washers for vegetables. Cooking and cooling equipments. Elervators.

### 6390 - 6391 - 6392



### Chains with tension plates

The tension plates give the chain an increased load capacity, an increased dimensional stability (length) against shockloads and extreme temperature differences (pasteurizers cookers, coolers, etc.). The thermal, transversal

stability is ensured by the metal chain pins. \*\*The load capacity of the chain depends on the number of tension plates assembled in the chain. The max. working load for every row of tension plates is: 1500 N. Applying 2 rows of tension plates gives 3000 N, with 3 rows of tension plates 4500 N, etc. One row of tension plates can be applied every 75 mm of width (= module width).

### Chains without tension plates

Suitable for light duty applications. The chains without tension plates are assembled with thermoplastic pins.

| Standard materials                                      | W                                               | WHT                                   |                                                 | BHT                  |                                                      | W                                                                                                                                                                                                                                              | 'LT                 |
|---------------------------------------------------------|-------------------------------------------------|---------------------------------------|-------------------------------------------------|----------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                                                         | Polypropyl                                      | ene (white)                           | Polypropy                                       | lene (blue)          | Blend (yellow)                                       | Polyethyle                                                                                                                                                                                                                                     | ne (white)          |
| State of supply                                         | With plates                                     | Without plates                        | With plates                                     | Without plates       | With plates                                          | With plates                                                                                                                                                                                                                                    | Without plates      |
| Pin material                                            | Stainless steel<br>AISI 304                     | Polypropylene<br>WHT                  | Stainless steel<br>AISI 304                     | Polypropylene<br>WHT | Stainless steel<br>AISI 304                          | Stainless steel<br>AISI 304                                                                                                                                                                                                                    | Polyethylene<br>WLT |
| Max. working load without plates (N/m)                  | **                                              | 3000                                  | **                                              | 3000                 | * *                                                  | **                                                                                                                                                                                                                                             | 2000                |
| WEIGHT (Kg/m <sup>2</sup> )<br>6390<br>6391<br>6392     | 9,55 <b>*</b><br>9,02 <b>*</b><br>8,75 <b>*</b> | 5,6<br>5,1<br>4,8                     | 9,55 <b>*</b><br>9,02 <b>*</b><br>8,75 <b>*</b> | 5,6<br>5,1<br>4,8    | 9,55 <b>*</b><br>9,02 <b>*</b><br>8,75 <b>*</b>      | 9,55 <b>*</b><br>9,02 <b>*</b><br>8,75 <b>*</b>                                                                                                                                                                                                | 5,6<br>5,1<br>4,8   |
| TEMPERATURE OF OPERATION (°C)<br>in air<br>in hot water |                                                 |                                       | + 105<br>105                                    |                      | + 5 to + 130<br>+ 130                                | - 70 to                                                                                                                                                                                                                                        | + 25                |
| Application characteristics                             |                                                 | Suitable for gene<br>High chemical re | ral applications.                               |                      | Increased<br>resistance against<br>high temperatures | Increased resistance against low<br>temperatures. At temperatures<br>under -5°C the version without<br>tension plates is to be preferred<br>as the risk of conveyed products<br>freezing to the metal parts of the<br>chain is almost minimal. |                     |

(for an increased chemical resistance).

= Weight of tension plates to be added (1 row : 0,3 Kg/m).
Tension plates material: stainless steel AISI 304.
On request the tension plates and pins can be supplied in stainless steel AISI 316.

Pin retention : riveted. Available on request other materials and colours.

### ACCESSORIES for 6390 - 6391 - 6392



### Not available for chain series 6392.

On request other heights can be supplied. Material characteristics : see page 12.1-13.1.

### Pusher attachments for flights 6390 - 6391 - 6392



Application : permits the application of specially made metal flights. Special flights can be welded on the pusher.

### SPROCKETS for 6390 - 6391 - 6392

KUS 6390 - With plain bore



ф Df De 60

KUS 6390 - With finished bore





KUS 6390 - With finished square bore



1 B

60

| Code<br>Rexnord<br>Nr. | oft | No.<br>teeth<br>Z<br>effectiv | Pitch<br>dia.<br>Dp<br>re mm | Outside<br>dia.<br>De<br>mm | Bore<br>dia.<br>Df<br>mm | Df<br>max<br>mm | Weight<br>kg |
|------------------------|-----|-------------------------------|------------------------------|-----------------------------|--------------------------|-----------------|--------------|
| KUS 6390 T08 R19,5     | 8   | 8                             | 130,64                       | 120,7                       | 19,5                     | 50              | 0,59         |
| KUS 6390 T10 R19,5     | 10  | 10                            | 161,80                       | 153,9                       | 19,5                     | 70              | 0,98         |
| KUS 6390 T12 R19,5     | 12  | 12                            | 193,18                       | 186,6                       | 19,5                     | 90              | 1,48         |
| KUS 6390 T16 R19,5     | 16  | 16                            | 256,29                       | 251,4                       | 19,5                     | 130             | 2,60         |

Material : polyethylene PE (white).

Material characteristics / mounting instruction : see page 77-81

| Code<br>Rexnord<br>Nr.                                                                           | of t                | Vo.<br>eeth<br>Z<br>effective | Pitch<br>dia.<br>Dp<br>mm            | Outside<br>dia.<br>De<br>mm      | Bore<br>dia.<br>Df<br>mm | Weight<br>kg                 |
|--------------------------------------------------------------------------------------------------|---------------------|-------------------------------|--------------------------------------|----------------------------------|--------------------------|------------------------------|
| KUS 6390 T08 R35<br>KUS 6390 T10 R35<br>KUS 6390 T12 R35<br>KUS 6390 T12 R35<br>KUS 6390 T16 R35 | 8<br>10<br>12<br>16 | 8<br>10<br>12<br>16           | 130,64<br>161,80<br>193,18<br>256,29 | 120,7<br>153,9<br>186,6<br>251,4 | 35<br>35<br>35<br>35     | 0,59<br>0,98<br>1,48<br>2,60 |

Material : polyethylene PE (white). Seat keyway: UNI 6604-69. See page 77. Material characteristics / mounting instruction : see page 77-81

| Code<br>Rexnord<br>Nr. | of t | lo.<br>eeth<br>Z<br>effective | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Square<br>bore<br>B<br>mm | Weight<br>kg |
|------------------------|------|-------------------------------|---------------------------|-----------------------------|---------------------------|--------------|
| KUS 6390 T08 S40       | 8    | 8                             | 130,64                    | 120,7                       | 40x40                     | 0,59         |
| KUS 6390 T10 S         | 10   | 10                            | 161,80                    | 153,9                       | 40x40, 50x50              | 0,98         |
| KUS 6390 T12 S         | 12   | 12                            | 193,18                    | 186,6                       | 40x40, 50x50              | 1,48         |
| KUS 6390 T16 S         | 16   | 16                            | 256,29                    | 251,4                       | 40x40, 50x50              | 2,60         |

Material : polyethylene PE (white)

Material characteristics / mounting instruction : see page 77-81

Example of codenumber: KUS 6390 T12 S40x40 (including bore)

Side guards for 6390 - 6391 - 6392 Left **CHAINS AND** ACCESSORIES Right 0

Material

WHT polypropylene (white,blue) YSM Blend (yellow)

WHT polypropylene (white,blue)

WLT polyethylene (white)

WLT polyethylene (white)

YSM Blend (yellow)

Ì

Execution

Right

Left

Series Pitch

|                                  | Code n                                 | Code numbers for replacement modules               |                                                    |  |  |  |
|----------------------------------|----------------------------------------|----------------------------------------------------|----------------------------------------------------|--|--|--|
| Chain                            | Module                                 | Flight H 15                                        | Flight H 50                                        |  |  |  |
| WHT 6390<br>YSM 6390<br>WLT 6390 | WHT 6390 R<br>YSM 6390 R<br>WLT 6390 R | WHT 6390 H15 R<br>YSM 6390 H15 R<br>WLT 6390 H15 R | WHT 6390 H50 R<br>YSM 6390 H50 R<br>WLT 6390 H50 R |  |  |  |
| WHT 6391<br>YSM 6391<br>WLT 6391 | WHT 6391 R<br>YSM 6391 R<br>WLT 6391 R | WHT 6391 H15 R<br>YSM 6391 H15 R<br>WLT 6391 H15 R | WHT 6391 H50 R<br>YSM 6391 H50 R<br>WLT 6391 H50 R |  |  |  |
| WHT 6392<br>YSM 6392<br>WLT 6392 | WHT 6392 R<br>YSM 6392 R<br>WLT 6392 R |                                                    |                                                    |  |  |  |

Assembly : can be pressed into an existing chain. See page 85. Material characteristics : see page 12.1-13.1.

Code

Rexnord Nr.

Side guard WHT 6000 DX

Side guard YSM 6000 DX

Side guard WLT 6000 DX

Side guard WHT 6000 SX

Side guard YSM 6000 SX Side guard WLT 6000 SX

Material characteristics : see page 12.1-13.1.

Only for chains with tension plates





Chain for high loads. Open hinges. Improved cleanability of pins.

### ß see page 60

MATERIAL CHARACTERISTICS

CHAIN WIDTH

see page 12.1-13.1

## ENGINEERING INFORMATION

Chain pull calculations: see page 70 Guide rail and catenary: see page 73-76 Mounting instructions: see page 85

Chemical resistance : see page 86

### Pitch 57,15 mm (21/4") Open area

34% HT material approved for direct contact with food products. FDA

### Applications

Large pasteurizers. Large accumulation tables.



### Maximum recommended working load- Fmax



| Standard materials                                      | LF HT                                  |  |
|---------------------------------------------------------|----------------------------------------|--|
|                                                         | Acetal Polypropylen                    |  |
| Colour                                                  | Light brown Beige                      |  |
| Nominal strength * (N/m)                                | 43800 29200                            |  |
| TEMPERATURE OF OPERATION (°C)<br>in air<br>in hot water | - 40 to + 80 + 5 to + 10<br>+ 65 + 105 |  |
| Weight (Kg/m <sup>2</sup> )                             | 15 10                                  |  |
| Pin material WHT polypropylene                          |                                        |  |

\* = Values for a belt width of 1 m, at +20°C. Pin retention : hot formed heads.

Available on request other materials and colours.



### **ACCESSORIES** for 4809

### Standard transfer combs



| Comb 4809 221   | 221 | PA FV reinforced polyamid (black) |
|-----------------|-----|-----------------------------------|
| Nr.             | mm  | Material                          |
| Code<br>Rexnord | L   |                                   |

Supplied with screws M6 in stainless steel and plugs (clip-in) for the slotted holes Material characteristics / mounting instruction : see page 82.

### Transfer combs with grooved surface With four mounting bolts



Supplied with screws M6 in stainless steel and plugs (clip-in) for the slotted holes

Suitable for glass bottles. Prevents trapping glassparticles. Not suitable for PET bottles or instable products. Material characteristics / mounting instruction : see page 82.

### SPROCKETS for 4809

### NS 5996 - split execution



N 5996 - N 5996 High Temperature



KU 5996

Be

21 47,7 B

| 47,7 |
|------|
|      |



| Code<br>Rexnord<br>Nr. | of t | lo.<br>eeth<br>Z<br>effective | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Square<br>bore<br>B<br>mm | Weight<br>kg |
|------------------------|------|-------------------------------|---------------------------|-----------------------------|---------------------------|--------------|
| NS 5996 T14 SHS        | 14   | 14                            | 256,82                    | 256,5                       | 90x90-120x120             | 0,77         |

Material : reinforced polyamid (green), high temperature resistant. Material characteristics / mounting instruction : see page 77-81

| Code<br>Rexnord<br>Nr. ac | of te | o.<br>eeth<br>Z<br>effective | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Square<br>bore<br>B<br>mm | Weight<br>kg |
|---------------------------|-------|------------------------------|---------------------------|-----------------------------|---------------------------|--------------|
| N 5996 T07 S40            | 7     | 7                            | 131,72                    | 125,5                       | 40x40                     | 0,23         |
| * N 5996 T09 SHS          | 9     | 9                            | 167,08                    | 164,1                       | 40x40-50x50-65x65         | 0,40         |
| * N 5996 T14 SHS          | 14    | 14                           | 256,82                    | 256,5                       | 40x40-50x50-65x65-90x9    | 0 0,77       |

\* High temperature resistance

Material : acetal, black (N 5996). Reinforced polyamid , green (N 5996 HS). Material characteristics / mounting instruction : see page 77-81

| Code<br>Rexnord<br>Nr.             | oft | lo.<br>eeth<br>Z<br>effective | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Bore<br>dia.<br>Df<br>mm             | L<br>mm      | Df<br>max<br>mm | Weight<br>kg |
|------------------------------------|-----|-------------------------------|---------------------------|-----------------------------|--------------------------------------|--------------|-----------------|--------------|
| KU 5996 T09 R20<br>KU 5996 T14 R20 |     | 9<br>14                       | 167,08<br>256,82          |                             | 20 <sup>H7</sup><br>20 <sup>H7</sup> | 44,3<br>47,7 | 90<br>120       | -            |

Material : polyamid PA (black).

Material characteristics / mounting instruction : see page 77-81

CHAIN AND ACCESSORIES

> Series Pitch

4809

Example of codenumber: N 5996 T09 S50x50 (including bore)



### RF

see page 62

CHAIN

MATERIAL CHARACTERISTICS see page 12.1-13.1

> ENGINEERING INFORMATION Chain pull calculations: see page 70 Guide rail and catenary: see page 73-76

Mounting instructions: see page 85 Chemical resistance : Pitch 57,15 mm (21/4")

### **Open area** 5996 (21%) 5997 (22%)

WHT, WLT, HT materials approved for direct contact with

food products.

**USDA** 5996 approved for direct contact with meat and poultry.

### Applications

FDA

Large pasteurizers. Accumulation tables in glass industry. Large elevators. Bulk conveyors in food industries. Washing equipment in food industry. Freezers and coolers.

### 5996



5997





\* = Values for a belt width of 1 m, at +20°C. **Pin retention :** with plugs or hotformed heads

Available on request other materials and colours.

### Maximum recommended working load- Fmax



48

### Flights for 5996



WLT 5996 F4 WLT polyethylene

On request other heights can be supplied. Material characteristics : see page 12.1-13.1.

### Side guards for 5996



Transfer combs for 5997



Material : reinforced polyamid PA FV (black). For L 146 : white acetal. Supplied with screws M6 in stainless steel and plugs (clip-in) for the slotted holes

157 187

37 25,4

82,6

Material characteristics / mounting instruction : see page 82.

Reinforced

### Transfer plates for 5996



Material characteristics / mounting instruction : see page 82.

Material characteristics : see page 12.1-13.1.

### SPROCKETS for 5996 - 5997

NS 5996 - split execution



B 21

47,7

N 5996 - N 5996 High Temperature





| KU | 5996 |
|----|------|



|  | 1 |
|--|---|



| Code<br>Rexnord<br>Nr.                                              | N<br>of te<br>actual |    | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Square<br>bore<br>B<br>mm | Weight<br>kg |
|---------------------------------------------------------------------|----------------------|----|---------------------------|-----------------------------|---------------------------|--------------|
| NS 5996 T14 SHS                                                     | 14                   | 14 | 256,82                    | 256,5                       | 90x90-120x120             | 0,77         |
| Material : reinforced polyamid (green), high temperature resistant. |                      |    |                           |                             |                           |              |

Material characteristics / mounting instruction : see page 77-81

| Code<br>Rexnord<br>Nr. | of t | lo.<br>eeth<br>Z<br>effective | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Square<br>bore<br>B<br>mm | Weight<br>kg |
|------------------------|------|-------------------------------|---------------------------|-----------------------------|---------------------------|--------------|
| N 5996 T07 S40         | 7    | 7                             | 131,72                    | 125,5                       | 40x40                     | 0,23         |
| * N 5996 T09 SHS       | 9    | 9                             | 167,08                    | 164,1                       | 40x40-50x50-65x65         | 0,40         |
| * N 5996 T14 SHS       | 14   | 14                            | 256,82                    | 256,5                       | 40x40-50x50-65x65-90x9    | 0 0,77       |

\* High temperature resistance

Material : acetal, black (N 5996). Reinforced polyamid , green (N 5996 HS). Material characteristics / mounting instruction : see page 77-81

| Code<br>Rexnord<br>Nr.             | oft | lo.<br>eeth<br>Z<br>effective | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Bore<br>dia.<br>Df<br>mm             | L<br>mm      | Df<br>max<br>mm | Weight<br>kg |
|------------------------------------|-----|-------------------------------|---------------------------|-----------------------------|--------------------------------------|--------------|-----------------|--------------|
| KU 5996 T09 R20<br>KU 5996 T14 R20 |     | 9<br>14                       | 167,08<br>256,82          |                             | 20 <sup>H7</sup><br>20 <sup>H7</sup> | 44,3<br>47,7 | 90<br>120       | -            |

Material : polyamid PA (black).

Material characteristics / mounting instruction : see page 77-81

5996 5997

Example of codenumber: N 5996 T09 S50x50 (including bore)

**CHAINS AND** ACCESSORIES

Series

D

mm

50,8

64,1 89,5

111,3

Pitch

# Rex 5998 Chain: with 45% Open Area



- New, Rex<sup>®</sup> 5998 MatTop<sup>®</sup> thermoplastic chain provides an extremely large open area for highly efficient drainage while also providing heavy-duty chain strength
- The chain is easy to clean and has excellent chemical and abrasive resistance characteristics

 Rex<sup>®</sup> 5998 MatTop<sup>®</sup> chain features a unique pin retention design. There are no plugs and no need for a soldering gun to secure pins, therefore the pins are completely reusable.



## SERIES 5998 PITCH 57,15

Chain for high loads. Open hinges. Improved cleanability of pins.

## ß

WIDTH see page 63

CHAIN

MATERIAL CHARACTERISTICS see page 12.1-13.1

> ENGINEERING INFORMATION Chain pull calculations: see page 70 Guide rail and catenary: see page 73-76 Mounting instructions: see page 85

Chemical resistance : see page 86

### Pitch 57,15 mm (21/4")

### 45% Open area





### Applications

Bulk food handling, freezing, blanching, cooking and washing.



### Maximum recommended working load- Fmax

PERFORMED TOP





| Standard materials                                      | WHT                   | WLT                       |  |  |
|---------------------------------------------------------|-----------------------|---------------------------|--|--|
|                                                         | Polypropylene         | Polyethylene              |  |  |
| Colour                                                  | White                 | White                     |  |  |
| Nominal strength * (N/m)                                | 35000                 | 23300                     |  |  |
| TEMPERATURE OF OPERATION (°C)<br>in air<br>in hot water | + 5 to + 105<br>+ 105 | - 70 to + 25              |  |  |
| Weight (Kg/m <sup>2</sup> )                             | 8,35                  | 8,85                      |  |  |
| Pin material                                            | WHT polypro           | WHT polypropylene (white) |  |  |

\* = Values for a belt width of 1 m, at +20°C. Pin retention : with plugs.

Available on request other materials and colours.



| _ Code                                     | K                                 |                   |
|--------------------------------------------|-----------------------------------|-------------------|
| Rexnord<br>Nr.                             | K<br>mm inch                      | Material          |
| Transfer plate K 06<br>Transfer plate K 12 | <b>152,4</b> 6<br><b>304,8</b> 12 | LF acetal (white) |

On request other heights can be supplied. Material characteristics : see page 12.1-13.1.

### Side guards



Material characteristics : see page 12.1-13.1.

### SPROCKETS for 5998

NS 5996 - split execution



B 21

47,7

N 5996 - N 5996 High Temperature





| ĸIJ | 5996 |
|-----|------|
| NU  | 3330 |



47,7

| ¢ |    |
|---|----|
|   | De |

|   | Code<br>Rexnord<br>Nr. | No.<br>of teeth<br>Z<br>actual effective |    | dia.<br>Dp | Outside<br>dia.<br>De<br>mm | Square<br>bore<br>B<br>mm | Weight<br>kg |
|---|------------------------|------------------------------------------|----|------------|-----------------------------|---------------------------|--------------|
|   | N 5996 T07 S40         | 7                                        | 7  | 131,72     | 125,5                       | 40x40                     | 0,23         |
| * | N 5996 T09 SHS         | 9                                        | 9  | 167,08     | 164,1                       | 40x40-50x50-65x65         | 0,40         |
| * | N 5996 T14 SHS         | 5 14                                     | 14 | 256,82     | 256,5                       | 40x40-50x50-65x65-90x     | (90 0,77     |

\* N 5996 T14 S...HS 14 14 \* High temperature resistance

Code

Rexnord Nr.

NS 5996 T14 S...HS

Material : acetal, black (N 5996). Reinforced polyamid , green (N 5996 HS). Material characteristics / mounting instruction : see page 77-81

| Code<br>Rexnord<br>Nr.             | oft | lo.<br>eeth<br>Z<br>effective | Pitch<br>dia.<br>Dp<br>mm | Outside<br>dia.<br>De<br>mm | Bore<br>dia.<br>Df<br>mm | L<br>mm      | Df<br>max<br>mm | Weight<br>kg |
|------------------------------------|-----|-------------------------------|---------------------------|-----------------------------|--------------------------|--------------|-----------------|--------------|
| KU 5996 T09 R20<br>KU 5996 T14 R20 |     | 9<br>14                       | 167,08<br>256,82          |                             | 20 H7<br>20 H7           | 44,3<br>47 7 | 90<br>120       | -            |

Material : polyamid PA (black).

Material characteristics / mounting instruction : see page 77-81

5998

### **Transfer plates** 4,8 К

89

ACCESSORIES

**CHAIN AND** 

| Code<br>Rexnord                            | K                                 |                   | Series | Pitch |
|--------------------------------------------|-----------------------------------|-------------------|--------|-------|
| Nr.                                        | mm inch                           | Material          |        |       |
| Transfer plate K 06<br>Transfer plate K 12 | <b>152,4</b> 6<br><b>304,8</b> 12 | LF acetal (white) |        |       |

Material characteristics / mounting instruction : see page 82.

| Code    | No.<br>of teeth | Pitch<br>dia. | Outside<br>dia. | Square<br>bore | Wei  |
|---------|-----------------|---------------|-----------------|----------------|------|
| Rexnord | L               | Dp            | De              | В              | vvei |

Pitch

dia.

Dp

mm

256,82

No.

of teeth

7

actual effective

14

Material : reinforced polyamid (green), high temperature resistant. Material characteristics / mounting instruction : see page 77-81

14

Outside

dia.

De

mm

256,5

Square

bore

В

mm

90x90-120x120

Weight

kg

0,77

| Code<br>Rexnord<br>Nr. |          | eeth<br>Z<br>effective | dia.<br>Dp<br>mm | dia.<br>De<br>mm | bore<br>B<br>mm   | W |
|------------------------|----------|------------------------|------------------|------------------|-------------------|---|
| N 5996 T07 S40         | 7        | 7                      | 131,72           | 125,5            | 40x40             | ( |
| * N 5996 T09 S H       | <b>9</b> | 9                      | 167.08           | 164 1            | 40x40-50x50-65x65 | ( |

L

Example of codenumber: N 5996 T09 S50x50 (including bore)

**Mat Top**<sup>®</sup>



# **Mat Top**<sup>®</sup>

# CHAIN WIDTH

NOMINAL

### SERIES 1505 - 1506

Code

width

K 71,25

K 72 K 72,75 K 73,50 K 74,25

K 75,75 K 75,75 K 76,50

K 78,50 K 77,25 K 78 K 78,75 K 79,50 K 80,25

K 81

K 81 K 81,75 K 82,50 K 83,25 K 84 K 84,75

K 85,50 K 86,25 K 87 K 87,75

K 88,50 K 89,25 K 90 K 90,75 K 91,50

K 92,25 K 93 K 93,75

K 94,50 K 95,25 K 96

| NOIVIINAL                             |                             |                              |                               |
|---------------------------------------|-----------------------------|------------------------------|-------------------------------|
| WIDTH                                 | Width                       | Code                         | Width                         |
| OF CHAIN                              | nommm                       | width                        | nommm                         |
|                                       | 76,2                        | K 03                         | 1809,8                        |
|                                       | 114,3                       | K 4,50                       | 1828,8                        |
|                                       | 133,4                       | K 5,25                       | 1847,9                        |
|                                       | 152,4                       | K 06                         | 1866,9                        |
|                                       | 171,5<br>190,5              | K 6,75<br>K 7,50             | 1886,0<br><mark>1905,0</mark> |
|                                       | 209,6                       | K 8,25                       | 1924,1                        |
|                                       | 228,6                       | K 09                         | 1943,1                        |
|                                       | 247,7                       | K 9,75                       | 1962,2                        |
|                                       | 266,7                       | K 10,50                      | 1981,2                        |
|                                       | 285,8<br><b>304,8</b>       | K 11,25<br><mark>K 12</mark> | 2000,3<br>2019,3              |
|                                       | 323,9                       | K 12,75                      | 2019,3                        |
| Standard widths                       | 342,9                       | K 13,50                      | 2057,4                        |
| in <b>blue</b>                        | 362,0                       | K 14,25                      | 2076,5                        |
|                                       | 381,0                       | K 15                         | 2095,5                        |
|                                       | 400,1                       | K 15,75<br>K 16,50           | 2114,6                        |
|                                       | 419,1<br>438,2              | K 10,50<br>K 17,25           | <mark>2133,6</mark><br>2152,7 |
|                                       | 457,2                       | K 18                         | 2171,7                        |
|                                       | 476,3                       | K 18,75                      | 2190,8                        |
|                                       | 495,3                       | K 19,50                      | 2209,8                        |
|                                       | 514,4                       | K 20,25<br><mark>K 21</mark> | 2228,9<br>2247,9              |
|                                       | <b>533,4</b><br>552,5       | K 21,75                      | 2247,9                        |
| Other widths                          | 571,5                       | K 22,50                      | 2286,0                        |
| available on                          | 590,6                       | K 23,25                      | 2305,1                        |
| request                               | 609,6                       | K 24                         | 2324,1                        |
| •                                     | 628,7<br>647,7              | K 24,75<br>K 25,50           | 2343,2<br>2362,2              |
|                                       | 666,8                       | K 26,25                      | 2381,3                        |
|                                       | 685,8                       | K 27                         | 2400,3                        |
|                                       | 704,9                       | K 27,75                      | 2419,4                        |
|                                       | 723,9<br>743,0              | K 28,50<br>K 29,25           | 2438,4                        |
|                                       | 743,0                       | K 29,23<br>K 30              |                               |
| TOLERANCES                            | 781,1                       | K 30,75                      |                               |
| CHAIN WIDTH                           | 800,1                       | K 31,50                      |                               |
| The final tests of                    | 819,2                       | K 32,25                      |                               |
| The indicated                         | <mark>838,2</mark><br>857,3 | <mark>K 33</mark><br>K 33,75 |                               |
| widths are nominal<br>dimensions. For | 876,3                       | K 34,50                      |                               |
| certified widths                      | 895,4                       | K 35,25                      |                               |
| and tolerances                        | 914,4                       | K 36                         |                               |
| refer to our                          | 933,5<br>952,5              | K 36,75<br>K 37,50           |                               |
| Technical                             | 971,6                       | K 38,25                      |                               |
| Department                            | 990,6                       | K 39                         |                               |
| '                                     | 1009,7                      | K 39,75                      |                               |
|                                       | 1028,7<br>1047,8            | K 40,50<br>K 41,25           |                               |
|                                       | 1066,8                      | K 41,23<br>K 42              |                               |
|                                       | 1085,9                      | K 42,75                      |                               |
|                                       | 1104,9                      | K 43,50                      |                               |
|                                       | 1124,0<br>1143,0            | K 44,25<br><mark>K 45</mark> |                               |
|                                       | 1162,1                      | K 45,75                      |                               |
|                                       | 1181,1                      | K 46,50                      |                               |
|                                       | 1200,2                      | K 47,25                      |                               |
|                                       | <b>1219,2</b><br>1238,3     | <mark>K 48</mark><br>K 48,75 |                               |
|                                       | 1257,3                      | K 48,75<br>K 49,50           |                               |
| EXAMPLE OF                            | 1276,4                      | K 50,25                      |                               |
| CODENUMBER                            | 1295,4                      | K 51                         |                               |
| 1506 HP K06                           | 1314,5                      | K 51,75                      |                               |
|                                       | 1333,5<br>1352,6            | K 52,50<br>K 53,25           |                               |
| Series                                | 1371,6                      | K 54                         |                               |
| Material                              | 1390,7                      | K 54,75                      |                               |
| LF, HP, WHT                           | 1409,7                      | K 55,50                      |                               |
| Width code                            | 1428,8<br>1447,8            | K 56,25<br><mark>K 57</mark> |                               |
| (inch)                                | 1466,9                      | K 57,75                      |                               |
|                                       | 1485,9                      | K 58,50                      |                               |
|                                       | 1505,0                      | K 59,25                      |                               |
|                                       | <b>1524,0</b><br>1543,1     | <mark>K 60</mark><br>K 60,75 |                               |
|                                       | 1562,1                      | K 61,50                      |                               |
|                                       | 1581,2                      | K 62,25                      |                               |
|                                       | 1600,2                      | K 63                         |                               |
| -                                     | 1619,3<br>1638,3            | K 63,75<br>K 64,50           |                               |
| CHAINS                                | 1657,4                      | K 64,50<br>K 65,25           |                               |
| 1505-1506                             | 1676,4                      | K 66                         |                               |
| see page 20                           | 1695,5                      | K 66,75                      |                               |
| 2100                                  | 1714,5<br>1733,6            | K 67,50<br>K 68,25           |                               |
| see page 32                           | 1753,0<br>1752,6            | K 00,20<br>K 69              |                               |
|                                       | 1771,7                      | K 69,75                      |                               |
|                                       | 1790,7                      | K 70,50                      |                               |
|                                       |                             |                              |                               |

ß

### SERIES 2100

| Width<br>nommm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Code<br>width                                                       | Width Code<br>nommm width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 76,2<br>101,6<br>127,0<br>152,4<br>177,8<br>203,2<br>228,6<br>254,0<br>279,4<br>304,8<br>330,2<br>355,6<br>381,0<br>406,4<br>431,8<br>457,2<br>482,6<br>533,4<br>558,8<br>584,2<br>605,6<br>635,0<br>660,4<br>685,8<br>711,2<br>736,6<br>762,0<br>787,4<br>812,8<br>838,2<br>863,6<br>635,0<br>660,4<br>685,8<br>711,2<br>736,6<br>762,0<br>787,4<br>812,8<br>838,2<br>863,6<br>889,0<br>914,4<br>939,8<br>965,2<br>990,6<br>1016,0<br>1041,4<br>1066,8<br>1092,2<br>1117,6<br>1143,0<br>1168,4<br>1193,8<br>1246,2<br>1371,6<br>1143,0<br>1168,4<br>1193,8<br>1246,2<br>1371,6<br>1397,0<br>1422,4<br>1374,6<br>1524,0<br>1549,4<br>1574,8<br>1346,2<br>1371,6<br>1397,0<br>1424,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1665,0<br>1549,4<br>1574,8<br>1752,6<br>1775,0<br>1780,0<br>1803,4<br>1828,8<br>2206,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2057,4<br>2006,6<br>2056,6<br>2056,6<br>2056,6<br>2056,6<br>2056,6<br>2056,6 | $ \begin{smallmatrix} 034\\ K \ K \ K \ K \ K \ K \ K \ K \ K \ K $ | 2362,2 K 93<br>2387,6 K 94<br>2413,0 K 95<br>2438,4 K 96<br>2463,8 K 97<br>2489,2 K 98<br>2514,6 K 99<br>2540,0 K 100<br>2565,4 K 101<br>2590,8 K 102<br>2616,2 K 103<br>2641,6 K 104<br>2667,0 K 105<br>2692,4 K 106<br>2717,8 K 107<br>2743,2 K 108<br>2768,6 K 109<br>2794,0 K 110<br>2819,4 K 111<br>2844,8 K 112<br>2870,2 K 113<br>2895,6 K 114<br>2921,0 K 115<br>2946,4 K 116<br>2971,8 K 117<br>2977,2 K 118<br>3022,6 K 119<br>3048,0 K 120<br>3073,4 K 121<br>3098,8 K 122<br>3124,2 K 123<br>3149,6 K 124<br>3175,0 K 125<br>3200,4 K 126<br>3225,8 K 132<br>3378,2 K 133<br>3403,6 K 139<br>3302,0 K 130<br>3327,4 K 131<br>3352,8 K 132<br>3378,2 K 133<br>3403,6 K 134<br>3429,0 K 135<br>3454,4 K 136<br>3479,8 K 137<br>3505,2 K 138<br>3530,6 K 139<br>3556,0 K 140<br>3581,4 K 141<br>3667,6 K 144<br>3633,0 K 142<br>3632,2 K 143<br>3579,2 K 148<br>3778,4 K 141<br>3667,6 K 144<br>3667,6 K 144<br>3667,6 K 144<br>3683,0 K 146<br>3773,8 K 147<br>3759,2 K 148<br>3784,6 K 149<br>3810,0 K 150<br>3835,4 K 151<br>3860,8 K 152<br>3866,2 K 153<br>3911,6 K 154<br>3937,0 K 155<br>3962,4 K 156<br>3987,8 K 157<br>4013,2 K 158<br>3947,4 K 161<br>4114,8 K 162<br>4140,2 K 163<br>4165,6 K 164<br>4191,0 K 155<br>3962,4 K 156<br>3987,8 K 157<br>4013,2 K 158<br>3947,8 K 157<br>4014,4 K 166<br>4241,8 K 167<br>4247,8 K 177<br>4348,8 K 177<br>4349,2 K 173<br>4495,8 K 177<br>4349,2 K 173<br>4495,8 K 177<br>4495,8 K |

# series 4705 - 4706 - 4707 - 4705 vacuum

| Width                | Code<br>width             | Width               | Code<br>width      |
|----------------------|---------------------------|---------------------|--------------------|
| nommm<br>76.2        | K 03                      | nommm<br>2362,2     | K 93               |
| 101,6                | K 04                      | 2387,6              | K 94               |
| 127,0                | K 05                      | 2413,0              | K 95               |
| 152,4                | <mark>K 06</mark>         | 2438,4              | <mark>K 96</mark>  |
| 177,8                | K 07                      | 2463,8              | K 97               |
| 203,2                | K 08                      | 2489,2              | K 98               |
| 228,6                | K 09                      | 2514,6              | K 99               |
| 254,0                | K 10                      | 2540,0              | K 100              |
| 279,4                | K 11                      | 2565,4              | K 101              |
| 304,8                | <mark>K 12</mark>         | 2590,8              | <mark>K 102</mark> |
| 330,2                | K 13                      | 2616,2              | K 103              |
| 355,6                | K 14                      | 2641,6              | K 104              |
| 381,0                | K 15                      | 2667,0              | K 105              |
| 406,4                | K 16                      | 2692,4              | K 106              |
| 431,8                | K 17                      | 2717,8              | K 107              |
| <mark>457,2</mark>   | <mark>K 18</mark>         | 2743,2              | <mark>K 108</mark> |
| 482,6                | K 19                      | 2768,6              | K 109              |
| 508,0                | K 20                      | 2794,0              | K 110              |
| 533,4                | <mark>K 21</mark>         | 2819,4              | <mark>K 111</mark> |
| 558,8                | K 22                      | 2844,8              | K 112              |
| 584,2                | K 23                      | 2870,2              | K 113              |
| 609,6                | K 24                      | 2895,6              | K 114              |
| 635,0                | K 25                      | 2921,0              | K 115              |
| 660,4                | K 26                      | 2946,4              | K 116              |
| <mark>685,8</mark>   | <mark>K 27</mark>         | 2971,8              | <mark>K 117</mark> |
| 711,2                | K 28                      | 2997,2              | K 118              |
| 736,6                | K 29                      | 3022,6              | K 119              |
| 762,0                | <mark>K 30</mark>         | <b>3048,0</b>       | <mark>K 120</mark> |
| 787,4                | K 31                      | 3073,4              | K 121              |
| 812,8                | K 32                      | 3098,8              | K 122              |
| <mark>838,2</mark>   | <mark>K 33</mark>         | <b>3124,2</b>       | <mark>K 123</mark> |
| 863,6                | K 34                      | 3149,6              | K 124              |
| 889,0                | K 35                      | 3175,0              | K 125              |
| <mark>914,4</mark>   | <mark>K 36</mark>         | <mark>3200,4</mark> | K 126              |
| 939,8                | K 37                      | 3225,8              | K 127              |
| 965,2                | K 38                      | 3251,2              | K 128              |
| 990,6                | K 39                      | 3276,6              | K 129              |
| 1016,0               | K 40                      | 3302,0              | K 130              |
| 1041,4               | K 41                      | 3327,4              | K 131              |
| <mark>1066,8</mark>  | <mark>K 42</mark>         | <b>3352,8</b>       | <mark>K 132</mark> |
| 1092,2               | K 43                      | 3378,2              | K 133              |
| 1117,6               | K 44                      | 3403,6              | K 134              |
| 1143,0               | K 45                      | 3429,0              | K 135              |
| 1168,4               | K 46                      | 3454,4              | K 136              |
| 1193,8               | K 47                      | 3479,8              | K 137              |
| 1219,2               | K 48                      | 3505,2              | K 138              |
| 1244,6               | K 49                      | 3530,6              | K 139              |
| 1270,0               | K 50                      | 3556,0              | K 140              |
| <mark>1295,4</mark>  | <mark>K 51</mark>         | <b>3581,4</b>       | <mark>K 141</mark> |
| 1320,8               | K 52                      | 3606,8              | K 142              |
| 1346,2               | K 53                      | 3632,2              | K 143              |
| 1371,6               | <mark>K 54</mark>         | 3657,6              | <mark>K 144</mark> |
| 1397,0<br>1422,4     | K 55                      | 3683,0              | K 145<br>K 146     |
| 1447,8               | K 56<br>K 57              | 3708,4<br>3733,8    | K 147              |
| 1473,2               | K 58                      | 3759,2              | K 148              |
| 1498,6               | K 59                      | 3784,6              | K 149              |
| <mark>1524,0</mark>  | <mark>K 60</mark>         | 3810,0              | <mark>K 150</mark> |
| 1549,4               | K 61                      | 3835.4              | K 151              |
| 1574,8               | K 62                      | 3860,8              | K 152              |
| 1600,2               | K 63                      | 3886,2              | K 153              |
| 1625,6               | K 64                      | 3911,6<br>3937,0    | K 154              |
| 1651,0               | K 65                      | 3962,4              | K 155              |
| 1676,4               | K 66                      |                     | K 156              |
| 1701,8               | K 67                      | 3987,8              | K 157              |
| 1727,2               | K 68                      | 4013,2              | K 158              |
| <mark>1752,6</mark>  | <mark>K 69</mark>         | <mark>4038,6</mark> | <mark>K 159</mark> |
| 1778,0               | K 70                      | 4064,0              | K 160              |
| 1803,4               | K 71                      | 4089,4              | K 161              |
| 1828,8               | <mark>K 72</mark>         | 4114,8              | <mark>K 162</mark> |
| 1854,2               | K 73                      | 4140,2              | K 163              |
| 1879,6               | K 74                      | 4165,6              | K 164              |
| 1905,0               | <mark>K 75</mark>         | 4191,0              | K 165              |
| 1930,4               | K 76                      | 4216,4              | K 166              |
| 1955,8               | K 77                      | 4241,8              | K 167              |
| 1 <mark>981,2</mark> | <mark>K 78</mark>         | <mark>4267,2</mark> | <mark>K 168</mark> |
| 2006,6               | K 79                      | 4292,6              | K 169              |
| 2032,0               | K 80                      | 4318,0              | K 170              |
| 2057,4               | K 81                      | 4343,4              | K 171              |
| 2082,8               | K 82                      | 4368,8              | K 172              |
| 2108,2               | K 83                      | 4394,2              | K 173              |
| 2133,6               | <mark>K 84</mark>         | 4419,6              | K 174              |
| 2159,0               | K 85                      | 4445,0              | K 175              |
| 2184,4               | K 86                      | 4470,4              | K 176              |
| 2209,8<br>2235,2     | <mark>K 87</mark><br>K 88 | 4495,8              | K 177              |
| 2260,6               | K 89                      |                     |                    |
| 2286,0<br>2311,4     | K 90<br>K 91              |                     |                    |
| 2336.8               | K 92                      |                     |                    |

2336,8

K 92

Nominal Width Of Chain

Standard widths in **blue** 

Other widths available **on** request

### TOLERANCES CHAIN WIDTH

The indicated widths are nominal dimensions. For certified widths and tolerances refer to our Technical Department

EXAMPLE OF CODENUMBER 4706 LF K 06 Series | Material LF,HT Width code (inch)

**CHAINS** 4705-4706-4707 see page 34

### *Mat Top*<sup>®</sup>

# series **4812**

| NOMINAL                             | 481                         | Z                          |                             |                              |                               |                              |                         |                              |                  |                                |                  |                                |
|-------------------------------------|-----------------------------|----------------------------|-----------------------------|------------------------------|-------------------------------|------------------------------|-------------------------|------------------------------|------------------|--------------------------------|------------------|--------------------------------|
| Nominal<br>Width                    | Width                       | Code                       | Width                       | Code                         | Width                         | Code                         | Width                   | Code                         | Width            | Code                           | Width            | Code                           |
| OF CHAIN                            | nommm                       | width                      | nommm                       | width                        | nommm                         | width                        | nommm                   | width                        | nommm            | width                          | nommm            | width                          |
|                                     | 10,9                        | K 0,43                     | 262,9                       | K 10,35                      | 849,6                         | K 33,45                      | 1503,4                  | K 59,19                      | 2155,7           | K 84,87                        | 2808,2           | K 110,56                       |
|                                     | 15,5<br>17,3                | K 0,61<br>K 0,68           | 268,0<br>269,7              | K 10,55<br>K 10,62           | 855,7<br>865,1                | K 33,69<br>K 34,06           | 1508,3<br>1517,7        | K 59,38<br>K 59,75           | 2165,4<br>2170,2 | K 85,25<br>K 85,44             | 2819,4<br>2822,4 | K 111<br>K 111,12              |
|                                     | 20,3                        | K 0,80                     | 272,5                       | K 10,73                      | 870,0                         | K 34,25                      | 1524,0                  | K 60                         | 2179,6           | K 85,81                        | 2830,8           | K 111,45                       |
|                                     | 22,1<br>25,4                | K 0,87<br>K 1              | 274,6<br>277,6              | K 10,81<br>K 10,93           | 880,4<br>883,9                | K 34,66<br>K 34,80           | 1531,9<br>1541,3        | K 60,31<br>K 60,68           | 2184,4<br>2193,8 | K 86,00<br>K 86,37             | 2836,9<br>2846,3 | K 111,69<br>K 112,06           |
|                                     | 29,7                        | K 1,17                     | 281,9                       | K 11,10                      | 893,8                         | K 35,19                      | 1546,1                  | K 60,87                      | 2198,6           | K 86,56                        | 2851,2           | K 112,25                       |
|                                     | 31,5<br>34,5                | K 1,24<br>K 1,36           | 284,0<br>287,0              | K 11,18<br>K 11,30           | 898,7<br>908,1                | K 35,38<br>K 35,75           | 1555,8<br>1560,6        | K 61,25<br>K 61,44           | 2209,8<br>2212,8 | K 87<br>K 87,12                | 2861,6<br>2865,1 | K 112,66<br>K 112,80           |
|                                     | 36,3                        | K 1,43                     | 289,1                       | K 11,38                      | 914,4                         | K 36                         | 1570,0                  | K 61,81                      | 2221,2           | K 87,45                        | 2875,0           | K 113,19                       |
|                                     | 39,4<br>44,2                | K 1,55<br>K 1,74           | 292,1<br>296,4              | K 11,50<br>K 11,67           | 922,3<br>931,7                | K 36,31<br>K 36,68           | 1574,8<br>1584,2        | K 62<br>K 62,37              | 2227,3<br>2236,7 | K 87,69<br>K 88,06             | 2879,9<br>2889,3 | K 113,38<br>K 113,75           |
| Chan dond widths                    | 45,7                        | K 1,80                     | 298,5                       | K 11,75                      | 936,5                         | K 36,87                      | 1589,0                  | K 62,56                      | 2241,6           | K 88,25                        | 2895,6           | K 114                          |
| Standard widths<br>in blue          | 49,0<br>50,5                | K 1,93<br>K 1,99           | 301,0<br>303,0              | K 11,85<br>K 11,93           | 946,2<br>951,0                | K 37,25<br>K 37,44           | 1600,2<br>1603,2        | K 63<br>K 63,12              | 2252,0<br>2255,5 | K 88,66<br>K 88,80             | 2903,5<br>2912,9 | K 114,31<br>K 114,68           |
|                                     | 53,3<br>58,4                | K 2,10<br>K 2,30           | 304,8<br>312,7              | <mark>K 12</mark><br>K 12,31 | 960,4<br>965,2                | K 37,81<br>K 38              | 1611,6<br>1617,7        | K 63,45<br>K 63,69           | 2265,4<br>2270,3 | K 89,19<br>K 89,38             | 2917,7<br>2927,4 | K 114,87<br>K 115,25           |
|                                     | 59,9                        | K 2,36                     | 322,1                       | K 12,68                      | 974,6                         | K 38,37                      | 1627,1                  | K 64,06                      | 2279,7           | K 89,75                        | 2932,2           | K 115,44                       |
|                                     | 63,5<br>65,0                | K 2,50<br>K 2,56           | 326,9<br>336,6              | K 12,87<br>K 13,25           | 979,4<br>990,6                | K 38,56<br>K 39              | 1632,0<br>1642,4        | K 64,25<br>K 64,66           | 2286,0<br>2293,9 | <mark>K 90</mark><br>K 90,31   | 2941,6<br>2946,4 | K 115,81<br>K 116              |
|                                     | 68,1                        | K 2,68                     | 341,4                       | K 13,44                      | 993,6                         | K 39,12                      | 1645,9                  | K 64,80                      | 2303,3           | K 90,68                        | 2955,8           | K 116,37                       |
|                                     | 72,9<br>74,4                | K 2,87<br>K 2,93           | 350,8<br>355,6              | K 13,81<br>K 14              | 1002,0<br>1008,1              | K 39,45<br>K 39,69           | 1655,8<br>1660,7        | K 65,19<br>K 65,38           | 2308,1<br>2317,8 | K 90,87<br>K 91,25             | 2960,6<br>2971,8 | K 116,56<br>K 117              |
|                                     | 76,2                        | К З                        | 365,0                       | K 14,37                      | 1017,5                        | K 40,06                      | 1670,1                  | K 65,75                      | 2322,6           | K 91,44                        | 2974,8           | K 117,12                       |
| Other widths                        | 79,5<br>82,3                | K 3,13<br>K 3,24           | 369,8<br>381,0              | K 14,56<br>K 15              | 1022,4<br>1032,8              | K 40,25<br>K 40,66           | <b>1676,4</b><br>1684,3 | <mark>K 66</mark><br>K 66,31 | 2332,0<br>2336,8 | K 91,81<br>K 92                | 2983,2<br>2989,3 | K 117,45<br>K 117,69           |
| available <b>on</b>                 | 87,1<br>88,6                | K 3,43<br>K 3,49           | 384,0<br>392,4              | K 15,12<br>K 15,45           | 1036,3<br>1046,2              | K 40,80<br>K 41,19           | 1693,7<br>1698,5        | K 66,68<br>K 66,87           | 2346,2<br>2351,0 | K 92,37<br>K 92,56             | 2998,7<br>3003,6 | K 118,06<br>K 118,25           |
| request                             | 91,7                        | K 3,61                     | 398,5                       | K 15,69                      | 1051,1                        | K 41,38                      | 1708,2                  | K 67,25                      | 2362,2           | K 93                           | 3014,0           | K 118,66                       |
|                                     | 93,5<br>96,8                | K 3,68<br>K 3,81           | 407,9<br>412,8              | K 16,06<br>K 16,25           | 1060,5<br>1066,8              | K 41,75<br><mark>K 42</mark> | 1713,0<br>1722,4        | K 67,44<br>K 67,81           | 2365,2<br>2373,6 | K 93,12<br>K 93,45             | 3017,5<br>3027,4 | K 118,80<br>K 119,19           |
|                                     | 101,3                       | K 3,99                     | 423,2                       | K 16,66                      | 1074,7                        | K 42,31                      | 1727,2                  | K 68                         | 2379,7           | K 93,69                        | 3032,3           | K 119,38                       |
|                                     | 103,1<br>106,2              | K 4,06<br>K 4,18           | 426,7<br>436,6              | K 16,80<br>K 17,19           | 1084,1<br>1088,9              | K 42,68<br>K 42,87           | 1736,6<br>1741,4        | K 68,37<br>K 68,56           | 2389,1<br>2394,0 | K 94,06<br>K 94,25             | 3041,7<br>3048,0 | K 119,75<br><mark>K 120</mark> |
|                                     | 107,7                       | K 4,24                     | 441,5                       | K 17,38                      | 1098,6                        | K 43,25                      | 1752,6                  | K 69                         | 2404,4           | K 94,66                        | 50.070           |                                |
| TOLERANCES                          | 111,0<br>115,8              | K 4,37<br>K 4,56           | 450,9<br>457,2              | K 17,75<br><mark>K 18</mark> | 1103,4<br>1112,8              | K 43,44<br>K 43,81           | 1755,6<br>1764,0        | K 69,12<br>K 69,45           | 2407,9<br>2417,8 | K 94,80<br>K 95,19             |                  |                                |
| CHAIN WIDTH                         | 117,3                       | K 4,62                     | 465,1                       | K 18,31                      | 1117,6                        | K 44                         | 1770,1                  | K 69,69                      | 2422,7           | K 95,38                        |                  |                                |
| The indicated                       | 120,4<br>121,9              | K 4,74<br>K 4,80           | 474,5<br>479,3              | K 18,68<br>K 18,87           | 1127,0<br>1131,8              | K 44,37<br>K 44,56           | 1779,5<br>1784,4        | K 70,06<br>K 70,25           | 2432,1<br>2438,4 | K 95,75<br><mark>K 96</mark>   |                  |                                |
| widths are nominal                  | 125,5<br>130,0              | K 4,94<br>K 5,12           | 489,0<br>493,8              | K 19,25<br>K 19,44           | 1143,0<br>1146,0              | K 45<br>K 45,12              | 1794,8<br>1798,3        | K 70,66<br>K 70,80           | 2446,3<br>2455,7 | K 96,31<br>K 96,68             |                  |                                |
| dimensions. For<br>certified widths | 131,6                       | K 5,18                     | 503,2                       | K 19,81                      | 1154,4                        | K 45,45                      | 1808,2                  | K 71,19                      | 2460,5           | K 96,87                        |                  |                                |
| and tolerances                      | 134,9<br>136,7              | K 5,31<br>K 5,38           | 508,0<br>517,4              | K 20<br>K 20,37              | 1160,5<br>1169,9              | K 45,69<br>K 46,06           | 1813,1<br>1822,5        | K 71,38<br>K 71,75           | 2470,2<br>2475,0 | K 97,25<br>K 97,44             |                  |                                |
| refer to our                        | 139,7                       | K 5,50                     | 522,2                       | K 20,56                      | 1174,8                        | K 46,25                      | 1828,8                  | K 72                         | 2484,4           | K 97,81                        |                  |                                |
| Technical<br>Department             | 144,3<br>146,1              | K 5,68<br>K 5,75           | 533,4<br>536,4              | K 21<br>K 21,12              | 1185,2<br>1188,7              | K 46,66<br>K 46,80           | 1836,7<br>1846,1        | K 72,31<br>K 72,68           | 2489,2<br>2498,6 | K 98<br>K 98,37                |                  |                                |
| Department                          | 149,1                       | K 5,87                     | 544,8                       | K 21,45                      | 1198,6                        | K 47,19                      | 1850,9                  | K 72,87                      | 2503,4           | K 98,56                        |                  |                                |
|                                     | 150,6<br><mark>152,4</mark> | K 5,93<br><mark>K 6</mark> | 550,9<br>560,3              | K 21,69<br>K 22,06           | 1203,5<br>1212,9              | K 47,38<br>K 47,75           | 1860,6<br>1865,4        | K 73,25<br>K 73,44           | 2514,6<br>2517,6 | K 99<br>K 99,12                |                  |                                |
|                                     | 153,9                       | K 6,06                     | 565,2                       | K 22,25<br>K 22,66           | <mark>1219,2</mark><br>1227,1 | <mark>K 48</mark><br>K 48,31 | 1874,8                  | K 73,81                      | 2526,0           | K 99,45                        |                  |                                |
|                                     | 155,7<br>158,5              | K 6,13<br>K 6,24           | 575,6<br>579,1              | K 22,80                      | 1236,5                        | K 48,68                      | 1879,6<br>1889,0        | K 74<br>K 74,37              | 2532,1<br>2541,5 | K 99,69<br>K 100,06            |                  |                                |
|                                     | 160,3<br>163,6              | K 6,31<br>K 6,44           | 589,0<br>593,9              | K 23,19<br>K 23,38           | 1241,3<br>1251,0              | K 48,87<br>K 49,25           | 1893,8<br>1905,0        | K 74,56<br>K 75              | 2546,4<br>2556,8 | K 100,25<br>K 100,66           |                  |                                |
|                                     | 167,9                       | K 6,61                     | 603,3                       | K 23,75                      | 1255,8                        | K 49,44                      | 1908,0                  | K 75,12                      | 2560,3           | K 100,80                       |                  |                                |
|                                     | 169,7<br>172,5              | K 6,68<br>K 6,79           | <mark>609,6</mark><br>617,5 | <mark>K 24</mark><br>K 24,31 | 1265,2<br>1270,0              | K 49,81<br>K 50              | 1916,4<br>1922,5        | K 75,45<br>K 75,69           | 2570,2<br>2575,1 | K 101,19<br>K 101,38           |                  |                                |
|                                     | 174,5                       | K 6,87<br>K 6,99           | 626,9                       | K 24,68                      | 1279,4<br>1284,2              | K 50,37<br>K 50,56           | 1931,9<br>1936,8        | K 76,06<br>K 76,25           | 2584,5<br>2590,8 | K 101,75                       |                  |                                |
| EXAMPLE OF                          | 177,5<br>182,1              | K 0,99<br>K 7,17           | 631,7<br>641,4              | K 24,87<br>K 25,25           | 1295,4                        | K 50,50<br>K 51              | 1947,2                  | K 76,66                      | 2598,7           | <mark>K 102</mark><br>K 102,31 |                  |                                |
| EXAMPLE OF<br>CODENUMBER            | 183,9<br>186,9              | K 7,24<br>K 7,36           | 646,2<br>655,6              | K 25,44<br>K 25,81           | 1298,4<br>1306,8              | K 51,12<br>K 51,45           | 1950,7<br>1960,6        | K 76,80<br>K 77,19           | 2608,1<br>2612,9 | K 102,68<br>K 102,87           |                  |                                |
| 4812 LF K12                         | 189,0                       | K 7,44                     | 660,4                       | K 26                         | 1312,9                        | K 51,69                      | 1965,5                  | K 77,38                      | 2622,6           | K 103,25                       |                  |                                |
|                                     | 192,0<br>196,6              | K 7,56<br>K 7,74           | 669,8<br>674,6              | K 26,37<br>K 26,56           | 1322,3<br>1327,2              | K 52,06<br>K 52,25           | 1974,9<br>1981,2        | K 77,75<br><mark>K 78</mark> | 2627,4<br>2636,8 | K 103,44<br>K 103,81           |                  |                                |
| Series                              | 198,1                       | K 7,80                     | 685,8                       | K 27                         | 1337,6                        | K 52,66                      | 1989,1                  | K 78,31                      | 2641,6           | K 104                          |                  |                                |
| Material                            | 200,9<br>202,9              | K 7,91<br>K 7,99           | 688,8<br>697,2              | K 27,12<br>K 27,45           | 1341,1<br>1351,0              | K 52,80<br>K 53,19           | 1998,5<br>2003,3        | K 78,68<br>K 78,87           | 2651,0<br>2655,8 | K 104,37<br>K 104,56           |                  |                                |
| LF, HT                              | 206,0<br>210,6              | K 8,11<br>K 8,29           | 703,3<br>712,7              | K 27,69<br>K 28,06           | 1355,9<br>1365,3              | K 53,38<br>K 53,75           | 2013,0<br>2017,8        | K 79,25<br>K 79,44           | 2667,0<br>2670,0 | K 105<br>K 105,12              |                  |                                |
| Width code<br>(inch)                | 212,3                       | K 8,36                     | 717,6                       | K 28,25                      | 1371,6                        | K 54                         | 2027,2                  | K 79,81                      | 2678,4           | K 105,45                       |                  |                                |
| (IIICII)                            | 215,4<br>218,4              | K 8,48<br>K 8,60           | 728,0<br>731,5              | K 28,66<br>K 28,80           | 1379,5<br>1388,9              | K 54,31<br>K 54,68           | 2032,0<br>2041,4        | K 80<br>K 80,37              | 2684,5<br>2693,9 | K 105,69<br>K 106,06           |                  |                                |
|                                     | 220,5                       | K 8,68                     | 741,4                       | K 29,19                      | 1393,7                        | K 54,87                      | 2046,2                  | K 80,56                      | 2698,8           | K 106,25                       |                  |                                |
|                                     | 225,0<br>226,8              | K 8,86<br>K 8,93           | 746,3<br>755,7              | K 29,38<br>K 29,75           | 1403,4<br>1408,2              | K 55,25<br>K 55,44           | 2057,4<br>2060,4        | K 81<br>K 81,12              | 2709,2<br>2712,7 | K 106,66<br>K 106,80           |                  |                                |
|                                     | 228,6                       | К9                         | 762,0                       | K 30                         | 1417,6                        | K 55,81                      | 2068,8                  | K 81,45                      | 2722,6           | K 107,19                       |                  |                                |
|                                     | 231,9<br>234,4              | K 9,13<br>K 9,23           | 769,9<br>779,3              | K 30,31<br>K 30,68           | 1422,4<br>1431,8              | K 56<br>K 56,37              | 2074,9<br>2084,3        | K 81,69<br>K 82,06           | 2727,5<br>2736,9 | K 107,38<br>K 107,75           |                  |                                |
| CHAINS                              | 239,5                       | K 9,43                     | 784,1                       | K 30,87                      | 1436,6                        | K 56,56                      | 2089,2                  | K 82,25                      | 2743,2           | K 108                          |                  |                                |
| 4812                                | 241,3<br>244,1              | K 9,50<br>K 9,61           | 793,8<br>798,6              | K 31,25<br>K 31,44           | 1447,8<br>1450,8              | K 57<br>K 57,12              | 2099,6<br>2103,1        | K 82,66<br>K 82,80           | 2751,1<br>2760,5 | K 108,31<br>K 108,68           |                  |                                |
| see page 40                         | 247,7                       | K 9,75                     | 808,0                       | K 31,81                      | 1459,2                        | K 57,45                      | 2113,0                  | K 83,19                      | 2765,3           | K 108,87<br>K 109,25           |                  |                                |
|                                     | 248,9<br>253,5              | K 9,80<br>K 9,98           | 812,8<br>822,2              | K 32<br>K 32,37              | 1465,3<br>1474,7              | K 57,69<br>K 58,06           | 2117,9<br>2127,3        | K 83,38<br>K 83,75           | 2775,0<br>2779,8 | K 109,25<br>K 109,44           |                  |                                |
|                                     | 254,0<br>258,1              | K 10<br>K 10,16            | 827,0<br>838,2              | K 32,56<br>K 33              | 1479,6<br>1490,0              | K 58,25<br>K 58,66           | 2133,6<br>2141,5        | <mark>K 84</mark><br>K 84,31 | 2789,2<br>2794,0 | K 109,81<br>K 110              |                  |                                |
|                                     | 260,1                       | K 10,18<br>K 10,24         | 838,2<br>841,2              | K 33<br>K 33,12              | 1490,0                        | K 58,66<br>K 58,80           | 2141,5<br>2150,9        | K 84,31<br>K 84,68           | 2803,4           | K 110<br>K 110,37              |                  |                                |
|                                     |                             |                            |                             |                              |                               |                              |                         |                              |                  |                                |                  |                                |

TEI

# series **4803**

| <b>48</b> U                                                                                                                                                                                        | 13                                                                                                                                                                                                                   |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                        |                                                                                                                                                                                                                |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Width<br>nommm                                                                                                                                                                                     | Code<br>width                                                                                                                                                                                                        | Width<br>nommm                                                                                                                                                                                            | Code<br>width                                                                                                                                                                                                                                                                                                                                                                                            | Width<br>nommm                                                                                                                                                                                                                     | Code<br>width                                                                                                                                                                                                                                                                                                                                                                                                                  | Width<br>nommm                                                                                                                                                                                                                  | Code<br>width                                                                                                                                                                                                          | Width<br>nommm                                                                                                                                                                                                 | Code<br>width                                                                                                                                                                                                                    | Width<br>nommm                                                                                                                                                                                                            | Code<br>width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nominal<br>Width<br>of Chain                                                                                                            |
| 20,8<br>25,4<br>29,7<br>34,0<br>39,4<br>44,2<br>48,8<br>53,6<br>58,4<br>59,9<br>64,8<br>69,6<br>74,2                                                                                               | K 0,82<br>K 1<br>K 1,17<br>K 1,34<br>K 1,55<br>K 1,74<br>K 1,92<br>K 2,11<br>K 2,30<br>K 2,36<br>K 2,36<br>K 2,55<br>K 2,74                                                                                          | 474,0<br>478,8<br>483,6<br>503,2<br>508,0<br>512,1<br>516,9<br>522,7<br>526,3<br>531,4<br>533,4<br>533,4<br>533,4                                                                                         | K 18,66<br>K 18,85<br>K 19,04<br>K 19,81<br>K 20,16<br>K 20,35<br>K 20,58<br>K 20,72<br>K 20,92<br>K 21<br>K 21,11                                                                                                                                                                                                                                                                                       | 998,2<br>1001,8<br>1007,4<br>1012,2<br>1017,0<br>1022,1<br>1041,4<br>1045,5<br>1050,3<br>1056,1<br>1059,7<br><b>1066,8</b>                                                                                                         | K 39,30<br>K 39,44<br>K 39,66<br>K 39,85<br>K 40,04<br>K 40,24<br>K 41<br>K 41,16<br>K 41,35<br>K 41,58<br>K 41,72<br>K 42<br>K 42                                                                                                                                                                                                                                                                                             | 1531,6<br>1535,2<br>1540,8<br>1545,6<br>1550,4<br>1570,0<br>1574,8<br>1578,9<br>1583,7<br>1589,5<br>1593,1<br>1598,2<br>1593,2                                                                                                  | K 60,30<br>K 60,44<br>K 60,66<br>K 60,85<br>K 61,04<br>K 61,81<br>K 62,16<br>K 62,16<br>K 62,25<br>K 62,28<br>K 62,72<br>K 62,92                                                                                       | 2057,4<br>2060,2<br>2065,0<br>2068,6<br>2074,2<br>2079,0<br>2088,9<br>2108,2<br>2112,3<br>2112,3<br>2117,1<br>2122,9<br>2104,5                                                                                 | K 81<br>K 81,11<br>K 81,30<br>K 81,44<br>K 81,66<br>K 81,85<br>K 82,04<br>K 82,24<br>K 83<br>K 83,16<br>K 83,35<br>K 83,58                                                                                                       | 2583,7<br>2590,8<br>2598,4<br>2602,0<br>2607,6<br>2612,4<br>2617,2<br>2636,8<br>2641,6<br>2645,7<br>2650,5<br>2656,3<br>2056,3                                                                                            | K 101,72<br>K 102,30<br>K 102,44<br>K 102,66<br>K 102,85<br>K 103,81<br>K 104<br>K 104,16<br>K 104,35<br>K 104,58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                         |
| 74,2<br>76,2<br>79,0<br>83,8<br>88,4<br>93,2<br>97,8<br>101,6<br>105,9<br>110,5<br>115,3<br>119,9<br>124,7                                                                                         | K 2,92<br>K 3<br>K 3,11<br>K 3,30<br>K 3,48<br>K 3,67<br>K 3,85<br>K 4,55<br>K 4,17<br>K 4,35<br>K 4,54<br>K 4,72<br>K 4,91                                                                                          | 541,0<br>544,6<br>550,2<br>555,0<br>559,8<br>564,9<br>584,2<br>588,3<br>593,1<br>598,9<br>602,5<br><b>609,6</b><br>617,2                                                                                  | K 21,30<br>K 21,44<br>K 21,66<br>K 21,85<br>K 22,04<br>K 22,24<br>K 23<br>K 23,16<br>K 23,35<br>K 23,58<br>K 23,58<br>K 23,72<br><b>K 24</b><br>K 24,30                                                                                                                                                                                                                                                  | 1074,4<br>1078,0<br>1083,6<br>1088,4<br>1093,2<br>1112,8<br>1117,6<br>1121,7<br>1126,5<br>1132,3<br>1135,9<br>1141,0<br>1143,0                                                                                                     | K 42,30<br>K 42,44<br>K 42,66<br>K 42,85<br>K 43,04<br>K 43,81<br>K 44<br>K 44,16<br>K 44,35<br>K 44,58<br>K 44,72<br>K 44,92<br>K 45                                                                                                                                                                                                                                                                                          | 1600,2<br>1603,0<br>1607,8<br>1611,4<br>1617,0<br>1621,8<br>1626,6<br>1631,7<br>1651,0<br>1655,1<br>1655,9<br>1665,7<br>1669,3                                                                                                  | K 63<br>K 63,11<br>K 63,30<br>K 63,44<br>K 63,85<br>K 64,04<br>K 64,24<br>K 65<br>K 65,16<br>K 65,35<br>K 65,58<br>K 65,72                                                                                             | 2126,5<br>2133,6<br>2141,2<br>2144,8<br>2150,4<br>2155,2<br>2160,0<br>2179,6<br>2184,4<br>2188,5<br>2193,3<br>2199,1<br>2202,7                                                                                 | K 83,72<br>K 84<br>K 84,30<br>K 84,44<br>K 84,66<br>K 84,85<br>K 85,04<br>K 85,81<br>K 86<br>K 86,16<br>K 86,16<br>K 86,35<br>K 86,58<br>K 86,72                                                                                 | 2659,9<br>2665,0<br>2667,0<br>2669,8<br>2674,6<br>2683,8<br>2683,8<br>2683,8<br>2688,6<br>2693,4<br>2698,5<br>2717,8<br>2717,9<br>2722,7                                                                                  | K 104,72<br>K 104,92<br>K 105<br>K 105,11<br>K 105,30<br>K 105,44<br>K 105,66<br>K 105,85<br>K 106,04<br>K 106,24<br>K 107<br>K 107,16<br>K 107,35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Standard widths<br>in blue                                                                                                              |
| 129,5<br>134,4<br>138,9<br>145,3<br><b>152,4</b><br>153,4<br>158,5<br>163,1<br>167,4<br>172,0<br>177,0<br>182,1                                                                                    | K 5,10<br>K 5,29<br>K 5,47<br>K 5,72<br>K 6<br>K 6,04<br>K 6,04<br>K 6,24<br>K 6,24<br>K 6,42<br>K 6,59<br>K 6,77<br>K 6,97<br>K 7,17                                                                                | 620,8<br>626,4<br>631,2<br>636,0<br>655,6<br>660,4<br>664,5<br>669,3<br>675,1<br>678,7<br>683,8<br>685,8                                                                                                  | K 24,44<br>K 24,66<br>K 24,85<br>K 25,04<br>K 25,81<br>K 26<br>K 26,16<br>K 26,16<br>K 26,58<br>K 26,58<br>K 26,72<br>K 26,92<br>K 27                                                                                                                                                                                                                                                                    | 1145,8<br>1150,6<br>1154,2<br>1159,8<br>1164,6<br>1169,4<br>1174,5<br>1193,8<br>1197,9<br>1202,7<br>1208,5<br>1212,1                                                                                                               | K 45,11<br>K 45,30<br>K 45,44<br>K 45,66<br>K 45,85<br>K 46,04<br>K 46,24<br>K 47,16<br>K 47,35<br>K 47,58<br>K 47,58<br>K 47,72                                                                                                                                                                                                                                                                                               | 1676,4<br>1684,0<br>1687,6<br>1693,2<br>1698,0<br>1702,8<br>1722,4<br>1727,2<br>1731,3<br>1736,1<br>1741,9<br>1745,5                                                                                                            | K 66<br>K 66,30<br>K 66,44<br>K 66,66<br>K 66,85<br>K 67,04<br>K 67,81<br>K 68<br>K 68,16<br>K 68,35<br>K 68,58<br>K 68,72                                                                                             | 2207.8<br>2209.8<br>2212.6<br>2217.4<br>2226.6<br>2231.4<br>2236.2<br>2241.3<br>2260.6<br>2264.7<br>2269.5                                                                                                     | K 86,92<br>K 87<br>K 87,11<br>K 87,30<br>K 87,44<br>K 87,66<br>K 87,85<br>K 88,04<br>K 88,24<br>K 89,16<br>K 89,35                                                                                                               | 2732.5<br>2736.1<br>2743.2<br>2750.8<br>2750.8<br>2760.0<br>2764.8<br>2769.6<br>2789.2<br>2794.0<br>2798.1<br>2802.9                                                                                                      | K 107,58<br>K 107,72<br>K 108<br>K 108,30<br>K 108,44<br>K 108,66<br>K 108,85<br>K 109,04<br>K 109,81<br>K 110<br>K 110,16<br>K 110,35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Other widths<br>available on<br>request                                                                                                 |
| 186,9<br>192,0                                                                                                                                                                                     | K 7,36<br>K 7,56                                                                                                                                                                                                     | 688,6<br>693,4                                                                                                                                                                                            | K 27,11<br>K 27,30                                                                                                                                                                                                                                                                                                                                                                                       | 1219,2<br>1226,8                                                                                                                                                                                                                   | <mark>K 48</mark><br>K 48,30                                                                                                                                                                                                                                                                                                                                                                                                   | 1750,6<br>1752,6                                                                                                                                                                                                                | K 68,92<br>K 69                                                                                                                                                                                                        | 2275,3<br>2278,9                                                                                                                                                                                               | K 89,58<br>K 89,72                                                                                                                                                                                                               | 2808,7<br>2812,3                                                                                                                                                                                                          | K 110,58<br>K 110,72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CHAIN WIDTH                                                                                                                             |
| 192,0<br>198,1<br>200,9<br>206,0<br>210,6<br>215,4<br>221,0<br>226,1<br>230,4<br>235,0<br>239,8<br>245,1<br>249,4<br>254,0<br>258,1<br>262,9<br>268,0<br>272,0<br>277,1<br>281,9<br>266,5<br>291,6 | K 7,56<br>K 7,80<br>K 7,91<br>K 8,11<br>K 8,29<br>K 8,48<br>K 8,70<br>K 9,07<br>K 9,25<br>K 9,44<br>K 9,65<br>K 9,82<br>K 10<br>K 10,16<br>K 10,35<br>K 10,71<br>K 10,71<br>K 10,91<br>K 11,28<br>K 11,28<br>K 11,28 | 693,4<br>697,0<br>702,6<br>707,4<br>712,2<br>717,3<br>736,6<br>740,7<br>745,5<br>751,3<br>754,9<br><b>762,0</b><br>769,6<br>773,2<br>778,8<br>783,6<br>788,4<br>808,0<br>812,8<br>816,9<br>821,7<br>827,5 | K 27,30<br>K 27,44<br>K 27,66<br>K 27,85<br>K 28,04<br>K 29,16<br>K 29,35<br>K 29,16<br>K 29,35<br>K 29,58<br>K 29,72<br>K 30,30<br>K 30,44<br>K 30,66<br>K 30,65<br>K 31,04<br>K 31,81<br>K 32<br>K 32,16<br>K 32,58                                                                                                                                                                                    | 1226,8<br>1230,4<br>1236,0<br>1240,8<br>1245,6<br>1265,2<br>1270,0<br>1274,1<br>1278,9<br>1284,7<br>1288,7<br>1293,4<br>1295,4<br>1295,4<br>1298,2<br>1303,0<br>1306,6<br>1312,2<br>1317,0<br>1321,8<br>1326,9<br>1346,2<br>1350,3 | K 48,30<br>K 48,44<br>K 48,66<br>K 48,85<br>K 49,04<br>K 50,16<br>K 50,16<br>K 50,16<br>K 50,58<br>K 50,72<br>K 50,92<br>K 51,11<br>K 51,30<br>K 51,44<br>K 51,66<br>K 51,85<br>K 52,24<br>K 53,16                                                                                                                                                                                                                             | 1752,6<br>1755,4<br>1760,2<br>1763,8<br>1769,4<br>1774,2<br>1779,0<br>1784,1<br>1803,4<br>1807,5<br>1812,3<br>1818,1<br>1821,7<br><b>1828,8</b><br>1836,4<br>1845,6<br>1850,4<br>1855,2<br>1874,8<br>1874,8<br>1879,6<br>1883,7 | K 69,11<br>K 69,30<br>K 69,44<br>K 69,66<br>K 69,85<br>K 70,04<br>K 70,24<br>K 71,16<br>K 71,35<br>K 71,58<br>K 71,72                                                                                                  | 2278,9<br>2286,0<br>2293,6<br>2297,2<br>2302,8<br>2307,6<br>2312,4<br>2332,0<br>2336,8<br>2340,9<br>2345,7<br>2355,1<br>2355,1<br>2360,2<br>2360,2<br>2369,8<br>2373,4<br>2379,0<br>2383,8<br>2388,6<br>2393,7 | K 89,72<br>K 90,30<br>K 90,44<br>K 90,66<br>K 90,85<br>K 91,04<br>K 91,81<br>K 92<br>K 92,16<br>K 92,35<br>K 92,58<br>K 92,58<br>K 92,58<br>K 92,52<br>K 92,92<br>K 93,11<br>K 93,30<br>K 93,85<br>K 94,04<br>K 94,04<br>K 94,24 | 2812,3<br>2817,4<br>2819,4<br>2822,2<br>2827,0<br>2830,6<br>2836,2<br>2841,0<br>2845,8<br>2850,9<br>2870,2<br>2874,3<br>2879,1<br>2884,9<br>2888,5<br>2895,6<br>2903,2<br>2906,8<br>2912,4<br>2912,4<br>2922,0<br>29241,6 | K 110,72<br>K 110,72<br>K 111<br>K 111,11<br>K 111,11<br>K 111,30<br>K 111,44<br>K 111,46<br>K 111,85<br>K 112,04<br>K 112,24<br>K 112,24<br>K 113,16<br>K 113,16<br>K 113,172<br>K 114,135<br>K 113,72<br>K 114<br>K 114,40<br>K 114,45<br>K 115,04<br>K 115,0 | The indicated<br>widths are nominal<br>dimensions. For<br>certified widths<br>and tolerances<br>refer to our<br>Technical<br>Department |
| 296,9<br><b>304,8</b><br>312,4<br>316,0<br>321,6<br>326,4<br>331,2<br>350,8<br>355,6<br>359,7<br>364,5<br>370,3<br>373,9<br>379,0<br>381,0<br>383,8<br>388,6<br>392,2<br>397,8<br>402,6            | K 11,69<br>K 12,30<br>K 12,44<br>K 12,66<br>K 12,85<br>K 13,04<br>K 14,85<br>K 14,16<br>K 14,35<br>K 14,58<br>K 14,58<br>K 14,58<br>K 14,72<br>K 15,85<br>K 15,11<br>K 15,30<br>K 15,44<br>K 15,85                   | 831,1<br>836,2<br>841,0<br>845,8<br>849,4<br>855,0<br>859,8<br>864,6<br>869,7<br>889,0<br>893,1<br>897,9<br>903,7<br>907,3<br>914,4<br>922,0<br>925,6<br>931,2<br>936,0                                   | $\begin{array}{c} {\sf K} 32,72\\ {\sf K} 32,92\\ {\sf K} 33\\ {\sf K} 33,11\\ {\sf K} 33,30\\ {\sf K} 33,44\\ {\sf K} 33,66\\ {\sf K} 33,85\\ {\sf K} 34,04\\ {\sf K} 34,24\\ {\sf K} 35\\ {\sf K} 35,16\\ {\sf K} 35,16\\ {\sf K} 35,16\\ {\sf K} 35,58\\ {\sf K} 36,30\\ {\sf K} 36,44\\ {\sf K} 36,66\\ {\sf K} 36,85\\ \end{array}$ | 1355,1<br>1360,9<br>1364,5<br>1371,6<br>1379,2<br>1382,8<br>1388,4<br>1393,2<br>1398,0<br>1417,6<br>1422,4<br>1426,5<br>1431,3<br>1437,1<br>1440,7<br>1445,8<br>1447,8<br>1445,8<br>1445,4<br>1459,0                               | $\begin{array}{c} {\sf K} 53,35\\ {\sf K} 53,58\\ {\sf K} 53,72\\ {\sf K} 54,30\\ {\sf K} 54,30\\ {\sf K} 54,44\\ {\sf K} 54,66\\ {\sf K} 54,85\\ {\sf K} 55,04\\ {\sf K} 56,16\\ {\sf K} 56,16\\ {\sf K} 56,35\\ {\sf K} 56,58\\ {\sf K} 56,58\\ {\sf K} 56,72\\ {\sf K} 56,72\\ {\sf K} 57,12\\ {\sf K} 57,30\\ {\sf K} 57,30\\ {\sf K} 57,44\\ \end{array}$ | 1888,5<br>1894,3<br>1897,9<br>1903,0<br>1905,0<br>1907,8<br>1912,6<br>1916,2<br>1921,8<br>1926,6<br>1931,4<br>1936,5<br>1955,8<br>1955,8<br>1955,8<br>1959,9<br>1964,7<br>1970,5<br>1974,1<br><b>1981,2</b><br>1988,8<br>1992,4 | K 74,35<br>K 74,58<br>K 74,72<br>K 74,92<br>K 75<br>K 75,11<br>K 75,30<br>K 75,44<br>K 75,66<br>K 75,85<br>K 76,04<br>K 76,04<br>K 76,24<br>K 77,16<br>K 77,16<br>K 77,158<br>K 77,72<br>K 78,30<br>K 78,30<br>K 78,34 | 2413,0<br>2417,1<br>2421,9<br>2427,7<br>2431,3<br><b>2438,4</b><br>2446,0<br>2455,2<br>2460,0<br>2464,8<br>2484,4<br>2489,2<br>2493,3<br>2498,1<br>2503,9<br>2507,5<br>2512,6<br>2514,6<br>2517,4              | K 95<br>K 95,16<br>K 95,35<br>K 95,58<br>K 95,72<br><b>K 96</b><br>K 96,30<br>K 96,44<br>K 96,66<br>K 96,85<br>K 97,04<br>K 97,81<br>K 98,16<br>K 98,35<br>K 98,16<br>K 98,58<br>K 98,72<br>K 98,92<br>K 99<br>K 99,11           | 2946,4<br>2950,5<br>2955,3<br>2961,1<br>2964,7<br>2969,8<br>2971,8<br>2979,4<br>2979,4<br>2993,0<br>2988,6<br>2993,4<br>2998,2<br>3003,3<br>3022,6<br>3026,7<br>3031,5<br>3037,3<br>3040,9<br><b>3048,0</b>               | K 116<br>K 116,16<br>K 116,35<br>K 116,35<br>K 116,58<br>K 116,92<br>K 117<br>K 117,11<br>K 117,10<br>K 117,44<br>K 117,46<br>K 117,45<br>K 118,04<br>K 118,04<br>K 118,24<br>K 119,35<br>K 119,35<br>K 119,58<br>K 119,72<br>K 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EXAMPLE OF<br>CODENUMBER<br>4803 LF K 06<br>Series  <br>Material<br>LF, HT<br>Width code<br>(inch)                                      |
| 407,4<br>412,5<br>431,8<br>435,9<br>440,7<br>446,5<br>450,1<br><b>457,2</b><br>464,8<br>468,4                                                                                                      | K 16,04<br>K 16,24<br>K 17<br>K 17,16<br>K 17,35<br>K 17,58<br>K 17,72<br><b>K 18</b><br>K 18,30<br>K 18,44                                                                                                          | 940,8<br>960,4<br>965,2<br>969,3<br>974,1<br>979,9<br>983,5<br>988,6<br>990,6<br>993,4                                                                                                                    | K 37,04<br>K 37,81<br>K 38<br>K 38,16<br>K 38,35<br>K 38,58<br>K 38,58<br>K 38,72<br>K 38,92<br>K 39<br>K 39,11                                                                                                                                                                                                                                                                                          | 1464,6<br>1469,4<br>1474,2<br>1479,3<br>1498,6<br>1502,7<br>1507,5<br>1513,3<br>1516,9<br><b>1524,0</b>                                                                                                                            | K 57,66<br>K 57,85<br>K 58,04<br>K 58,24<br>K 59<br>K 59,16<br>K 59,35<br>K 59,58<br>K 59,72<br>K 60                                                                                                                                                                                                                                                                                                                           | 1998,0<br>2002,8<br>2007,6<br>2032,0<br>2036,1<br>2040,9<br>2046,7<br>2050,3<br>2055,4                                                                                                                                          | K 78,66<br>K 78,85<br>K 79,04<br>K 79,81<br>K 80<br>K 80,16<br>K 80,35<br>K 80,58<br>K 80,72<br>K 80,92                                                                                                                | 2522,2<br>2525,8<br>2531,4<br>2536,2<br>2546,1<br>2565,4<br>2569,5<br>2574,3<br>2580,1                                                                                                                         | K 99,30<br>K 99,44<br>K 99,66<br>K 99,85<br>K 100,04<br>K 100,24<br>K 101<br>K 101,16<br>K 101,35<br>K 101,58                                                                                                                    |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHAINS<br>4803<br>see page 42                                                                                                           |

### Mat Top<sup>®</sup>

NOMINAL

ß

### SERIES 4809

| NOMINAL            |                       |                            |                  |                              |                               |                              |                               |                    |                  |
|--------------------|-----------------------|----------------------------|------------------|------------------------------|-------------------------------|------------------------------|-------------------------------|--------------------|------------------|
| WIDTH              | Width                 | Code                       | Width            | Code                         | Width                         | Code                         | Width                         | Code               | Width            |
| OF CHAIN           | nommm                 | width                      | nommm            | width                        | nommm                         | width                        | nommm                         | width              | nommm            |
|                    | 24,1                  | K 0,95                     | 584,2            | K 23                         | 1233,7                        | K 48,57                      | 1892,3                        | K 74,50            | 2534,7           |
|                    | 29,0                  | K 1,14                     | 590,8            | K 23,26                      | 1239,3                        | K 48,79                      | 1897,4                        | K 74,70            | 2540,0           |
|                    | 34,0                  | K 1,34                     | 596,9            | K 23,50                      | 1244,6                        | K 49                         | 1905,0                        | K 75               | 2545,3           |
|                    | 39,4<br>44,7          | K 1,55<br>K 1,76           | 602,0<br>609,6   | K 23,70<br><mark>K 24</mark> | 1266,7<br>1270,0              | K 49,87<br>K 50              | 1908,3<br>1913,6              | K 75,13<br>K 75,34 | 2565,4<br>2572,0 |
|                    | 50,3                  | K 1,98                     | 618,2            | K 24,34                      | 1276,6                        | K 50,26                      | 1919,5                        | K 75,54<br>K 75,57 | 2578,1           |
|                    | 55,6                  | K 2,19                     | 624,1            | K 24,57                      | 1282,7                        | K 50,50                      | 1925,1                        | K 75,79            | 2583,2           |
|                    | 61,0                  | K 2,40                     | 629,7            | K 24,79                      | 1287,8                        | K 50,70                      | 1930,4                        | K 76               | 2590.8           |
|                    | 68,6                  | K 2,70                     | 635,0            | K 25                         | 1295,4                        | K 51                         | 1935,7                        | K 76,21            | 2599,4           |
|                    | 73,9                  | K 2,91                     | 657,1            | K 25,87                      | 1298,7                        | K 51,13                      | 1955,8                        | K 77               | 2605,3           |
|                    | 79,5<br>85,1          | K 3,13<br>K 3,35           | 660,4<br>667,0   | K 26<br>K 26,26              | 1304,0<br>1309,9              | K 51,34<br>K 51,57           | 1962,4<br>1968,5              | K 77,26<br>K 77,50 | 2610,9<br>2616,2 |
|                    | 90,4                  | K 3,55<br>K 3,56           | 673,1            | K 26,20<br>K 26,50           | 1309,9                        | K 51,57<br>K 51,79           | 1900,5                        | K 77,50<br>K 77,70 | 2638,3           |
| Standard widths    | 95,8                  | K 3,77                     | 678,2            | K 26,70                      | 1320,8                        | K 52                         | 1981,2                        | K 78               | 2641,6           |
| in <b>blue</b>     | 101,6                 | K 4                        | 685,8            | K 27                         | 1326,1                        | K 52,21                      | 1989,8                        | K 78,34            | 2648,2           |
|                    | 105,4                 | K 4,15                     | 689,1            | K 27,13                      | 1346,2                        | K 53                         | 1995,7                        | K 78,57            | 2654,3           |
|                    | 110,5                 | K 4,35                     | 694,4            | K 27,34                      | 1352,8                        | K 53,26                      | 2001,3                        | K 78,79            | 2659,4           |
|                    | 115,6<br>120,9        | K 4,55<br>K 4,76           | 700,3<br>705,9   | K 27,57<br>K 27,79           | 1358,9<br>1364,0              | K 53,50<br>K 53,70           | 2006,6<br>2028,7              | K 79<br>K 79,87    | 2667,0<br>2670,3 |
|                    | 126,2                 | K 4,97                     | 711,2            | K 28                         | 1371,6                        | K 54                         | 2032,0                        | K 80               | 2675,6           |
|                    | 131,8                 | K 5,19                     | 716,5            | K 28,21                      | 1380,2                        | K 54,34                      | 2038,6                        | K 80,26            | 2681,5           |
|                    | 137,2                 | K 5,40                     | 736,6            | K 29                         | 1386,1                        | K 54,57                      | 2044,7                        | K 80,50            | 2687,1           |
|                    | 142,7                 | K 5,62                     | 743,2            | K 29,26                      | 1391,7                        | K 54,79                      | 2049,8                        | K 80,70            | 2692,4           |
|                    | 148,1                 | K 5,83                     | 749,3            | K 29,50                      | 1397,0                        | K 55                         | 2057,4                        | K 81               | 2697,7<br>2717.8 |
| Other widths       | <b>152,4</b><br>153,4 | <mark>K 6</mark><br>K 6,04 | 754,4<br>762,0   | K 29,70<br><mark>K 30</mark> | 1419,1<br>1422,4              | K 55,87<br>K 56              | 2060,7<br>2066,0              | K 81,13<br>K 81,34 | 2717,8<br>2724,4 |
| available on       | 159,0                 | K 6,26                     | 770,6            | K 30,34                      | 1429,0                        | K 56,26                      | 2000,0                        | K 81,54            | 2724,4           |
|                    | 165,1                 | K 6,50                     | 776,5            | K 30,57                      | 1435,1                        | K 56,50                      | 2077,5                        | K 81,79            | 2735,6           |
| request            | 169,9                 | K 6,69                     | 782,1            | K 30,79                      | 1440,2                        | K 56,70                      | 2082,8                        | K 82               | 2743,2           |
|                    | 175,0                 | K 6,89                     | 787,4            | K 31                         | 1447,8                        | K 57                         | 2088,1                        | K 82,21            | 2751,8           |
|                    | 181,1<br>185,9        | K 7,13<br>K 7,32           | 809,5            | K 31,87<br>K 32              | 1451,1<br>1456,4              | K 57,13                      | 2108,2<br>2114,8              | K 83<br>K 83,26    | 2757,7           |
|                    | 100,9                 | к 7,52<br>К 7,54           | 812,8<br>819,4   | K 32,26                      | 1450,4                        | K 57,34<br>K 57,57           | 2114,8                        | K 83,20<br>K 83,50 | 2763,3<br>2768,6 |
|                    | 197,1                 | K 7,76                     | 825,5            | K 32,50                      | 1467,9                        | K 57,79                      | 2126,0                        | K 83,70            | 2790,7           |
|                    | 202,4                 | K 7,97                     | 830,6            | K 32,70                      | 1473,2                        | K 58                         | 2133,6                        | K 84               | 2794,0           |
|                    | 208,0                 | K 8,19                     | 838,2            | K 33                         | 1478,5                        | K 58,21                      | 2142,2                        | K 84,34            | 2800,6           |
| TOLERANCES         | 214,1                 | K 8,43                     | 841,5            | K 33,13                      | 1498,6                        | K 59                         | 2148,1                        | K 84,57            | 2806,7           |
| CHAIN WIDTH        | 215,9<br>221,0        | K 8,50<br>K 8,70           | 846,8<br>852,7   | K 33,34<br>K 33,57           | 1505,2<br>1511,3              | K 59,26<br>K 59,50           | 2153,7<br>2159,0              | K 84,79<br>K 85    | 2811,8<br>2819,4 |
| The indicated      | 227,0                 | K 8,94                     | 858,3            | K 33,79                      | 1516,4                        | K 59,70                      | 2137,0                        | K 85,87            | 2822,7           |
| widths are nominal | 231,9                 | K 9,13                     | 863,6            | K 34                         | 1524,0                        | K 60                         | 2184,4                        | K 86               | 2828,0           |
| dimensions. For    | 237,5                 | K 9,35                     | 868,9            | K 34,21                      | 1532,6                        | K 60,34                      | 2191,0                        | K 86,26            | 2833,9           |
| certified widths   | 242,8                 | K 9,56                     | 889,0            | K 35                         | 1538,5                        | K 60,57                      | 2197,1                        | K 86,50            | 2839,5           |
| and tolerances     | 248,2<br>253,0        | K 9,77<br>K 9,96           | 895,6<br>901,7   | K 35,26<br>K 35,50           | 1544,1<br>1549,4              | K 60,79<br>K 61              | 2202,2<br>2209,8              | K 86,70<br>K 87    | 2844,8<br>2850,1 |
| refer to our       | 253,0                 | K 9,90<br>K 10,35          | 901,7<br>906,8   | K 35,50<br>K 35,70           | 1549,4                        | K 61,87                      | 2209,8                        | K 87,13            | 2870,2           |
| Technical          | 268,5                 | K 10,55                    | 914,4            | K 36                         | 1574.8                        | K 62                         | 2218,4                        | K 87,34            | 2876,8           |
| Department         | 273,6                 | K 10,77                    | 923,0            | K 36,34                      | 1581,4                        | K 62,26                      | 2224,3                        | K 87,57            | 2882,9           |
| .1                 | 278,9                 | K 10,98                    | 928,9            | K 36,57                      | 1587,5                        | K 62,50                      | 2229,9                        | K 87,79            | 2888,0           |
|                    | 284,5                 | K 11,20                    | 934,5            | K 36,79                      | 1592,6                        | K 62,70                      | 2235,2                        | K 88               | 2895,6           |
|                    | 290,1<br>297,4        | K 11,42<br>K 11,71         | 939,8<br>961,9   | K 37<br>K 37,87              | 1600,2<br>1603,5              | K 63<br>K 63,13              | 2240,5<br>2260,6              | K 88,21<br>K 89    | 2904,2<br>2910,1 |
|                    | 304,8                 | K 12                       | 965,2            | K 38                         | 1608,8                        | K 63,34                      | 2267,2                        | K 89,26            | 2915,7           |
|                    | 313,4                 | K 12,34                    | 971,8            | K 38,26                      | 1614,7                        | K 63,57                      | 2273,3                        | K 89,50            | 2921,0           |
|                    | 319,3                 | K 12,57                    | 977,9            | K 38,50                      | 1620,3                        | K 63,79                      | 2278,4                        | K 89,70            | 2943,1           |
|                    | 324,9                 | K 12,79                    | 983,0<br>990,6   | K 38,70                      | 1625,6                        | K 64                         | <mark>2286,0</mark><br>2294,6 | K 90               | 2946,4<br>2953,0 |
|                    | 330,2<br>352,3        | K 13<br>K 13,87            | 990,0<br>993,9   | K 39<br>K 39,13              | 1630,9<br>1651,0              | K 64,21<br>K 65              | 2294,0                        | K 90,34<br>K 90,57 | 2953,0<br>2959,1 |
|                    | 355,6                 | K 14                       | 999,2            | K 39,34                      | 1657,6                        | K 65,26                      | 2306,1                        | K 90,79            | 2964,2           |
|                    | 362,2                 | K 14,26                    | 1005,1           | K 39,57                      | 1663,7                        | K 65,50                      | 2311,4                        | K 91               | 2971,8           |
|                    | 368,3                 | K 14,50                    | 1010,7           | K 39,79                      | 1668,8                        | K 65,70                      | 2333,5                        | K 91,87            | 2975,1           |
| EXAMPLE OF         | 373,4                 | K 14,70<br>K 15            | 1016,0           | K 40<br>K 40 21              | <mark>1676,4</mark><br>1685,0 | K 66<br>K 66 24              | 2336,8<br>2343,4              | K 92               | 2980,4<br>2986,3 |
| CODENUMBER         | 381,0<br>384,3        | K 15<br>K 15,13            | 1021,3<br>1041,4 | K 40,21<br>K 41              | 1685,0                        | K 66,34<br>K 66,57           | 2343,4<br>2349,5              | K 92,26<br>K 92,50 | 2980,3<br>2991,9 |
| 4809 LF K12        | 389,6                 | K 15,34                    | 1048,0           | K 41,26                      | 1696,5                        | K 66,79                      | 2354,6                        | K 92,70            | 2997,2           |
| 4003 LF N 12       | 395,5                 | K 15,57                    | 1054,1           | K 41,50                      | 1701,8                        | K 67                         | 2362,2                        | K 93               | 3002,5           |
| Series             | 401,1                 | K 15,79                    | 1059,2           | K 41,70                      | 1723,9                        | K 67,87                      | 2365,5                        | K 93,13            | 3022,6           |
|                    | 406,4                 | K 16                       | 1066,8           | K 42                         | 1727,2                        | K 68                         | 2370,8                        | K 93,34            | 3029,2           |
| Material           | 411,7<br>431,8        | K 16,21<br>K 17            | 1075,4<br>1081,3 | K 42,34<br>K 42,57           | 1733,8<br>1739,9              | K 68,26<br>K 68,50           | 2376,7<br>2382,3              | K 93,57<br>K 93,79 | 3035,3<br>3040,4 |
| LF, HT             | 438,4                 | K 17,26                    | 1086,9           | K 42,37<br>K 42,79           | 1745,0                        | K 68,70                      | 2387,6                        | K 94               | 3048,0           |
| Width code         | 444,5                 | K 17,50                    | 1092,2           | K 43                         | 1752,6                        | K 69                         | 2392,9                        | K 94,21            |                  |
| (inch)             | 449,6                 | K 17,70                    | 1114,3           | K 43,87                      | 1755,9                        | K 69,13                      | 2413,0                        | K 95               |                  |
| (Inch)             | 457,2                 | K 18                       | 1117,6           | K 44                         | 1761,2                        | K 69,34                      | 2419,6                        | K 95,26            |                  |
|                    | 465,8<br>471,7        | K 18,34<br>K 18,57         | 1124,2<br>1130,3 | K 44,26<br>K 44,50           | 1767,1<br>1772,7              | K 69,57<br>K 69,79           | 2425,7<br>2430,8              | K 95,50<br>K 95,70 |                  |
|                    | 477,3                 | K 18,79                    | 1135,4           | K 44,30<br>K 44,70           | 1778,0                        | K 70                         | 2438,4                        | K 95,70<br>K 96    |                  |
|                    | 482,6                 | K 19                       | 1143,0           | K 45                         | 1783,3                        | K 70,21                      | 2447,0                        | K 96,34            |                  |
|                    | 504,7                 | K 19,87                    | 1146,3           | K 45,13                      | 1803,4                        | K 71                         | 2452,9                        | K 96,57            |                  |
|                    | 508,0                 | K 20                       | 1151,6           | K 45,34                      | 1810,0                        | K 71,26                      | 2458,5                        | K 96,79            |                  |
|                    | 514,6                 | K 20,26                    | 1157,5           | K 45,57                      | 1816,1                        | K 71,50                      | 2463,8                        | K 97               |                  |
| CHAINS             | 520,7<br>525,8        | K 20,50<br>K 20,70         | 1163,1<br>1168,4 | K 45,79<br>K 46              | 1821,2<br>1828,8              | K 71,70<br><mark>K 72</mark> | 2485,9<br>2489,2              | K 97,87<br>K 98    |                  |
| 4809               | 523,8<br>533,4        | K 20,70<br>K 21            | 1173,7           | K 46,21                      | 1837,4                        | K 72,34                      | 2409,2<br>2495,8              | K 98,26            |                  |
| see page 46        | 536,7                 | K 21,13                    | 1193,8           | K 47                         | 1843,3                        | K 72,57                      | 2501,9                        | K 98,50            |                  |
|                    | 542,0                 | K 21,34                    | 1200,4           | K 47,26                      | 1848,9                        | K 72,79                      | 2507,0                        | K 98,70            |                  |
|                    | 547,9                 | K 21,57                    | 1206,5           | K 47,50                      | 1854,2                        | K 73                         | 2514,6                        | K 99               |                  |
|                    | 553,5                 | K 21,79                    | 1211,6           | K 47,70                      | 1876,3                        | K 73,87                      | 2517,9                        | K 99,13            |                  |
|                    | 558,8<br>564,1        | K 22<br>K 22,21            | 1219,2<br>1227,8 | <mark>K 48</mark><br>K 48,34 | 1879,6<br>1886,2              | K 74<br>K 74,26              | 2523,2<br>2529,1              | K 99,34<br>K 99,57 |                  |
|                    | 504,1                 | N 22,21                    | 1227,0           | 1, 40,34                     | 1000,2                        | i∖ /4,20                     | 2029,1                        | N 77,07            |                  |

60

Code width

K 99,79 K 100 K 100,21

K 100,21 K 101 K 101,26

K 101,20 K 101,50 K 101,70 K 102 K 102,34

K 102,34 K 102,57 K 102,79 K 103 K 103,87

K 104 K 104,26 K 104,26 K 104,50 K 104,70 K 105

K 105,13

K 105,34 K 105,57 K 105,57 K 105,79 K 106

K 106,21 K 106,21 K 107 K 107,26 K 107,50 K 107,70

K 108,76 K 108,34 K 108,57

K 108,79

K 109 K 109,87 K 110 K 110,26 K 110,70 K 111 K 111,13 K 111,34 K 111,57 K 111,77 K 111,77 K 112 K 112,21 K 113

K 113,26 K 113,26 K 113,50 K 113,70 K 114 K 114,34

K 114,34 K 114,57 K 114,79 K 115 K 115,87 K 116 K 116,26

K 116,20 K 116,50 K 116,70 K 117 K 117,13

K 117,34 K 117,57 K 117,79

K 118 K 118,21

K 119 K 119,26 K 119,50 K 119,70 K 120

K 119

NOMINAL

### SERIES 5705 - 5706

| Width<br>nommm<br>76.2<br>82,6<br>114,3<br>127,0<br>152,4<br>179,5<br>203,2<br>228,6<br>254,0<br>279,4<br>304,8<br>330,2<br>355,6<br>381,0<br>406,4<br>431,8<br>457,2<br>482,6<br>558,8<br>558,8<br>558,8<br>558,8<br>564,2<br>609,6<br>635,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Code<br>width<br>K 03<br>K 3,25<br>K 05<br>K 05<br>K 07<br>K 7,5<br>K 08<br>K 09<br>K 10<br>K 11<br>K 12<br>K 13<br>K 14<br>K 13<br>K 14<br>K 15<br>K 16<br>K 17<br>K 18<br>K 19<br>K 20<br>K 21<br>K 22<br>K 23<br>K 24<br>K 25 | Width<br>nommm<br>2311,4<br>2336,8<br>2362,2<br>2387,6<br>2413,0<br>2438,4<br>2463,8<br>2489,2<br>2514,6<br>2540,0<br>2565,4<br>2590,8<br>2616,2<br>2641,6<br>2667,0<br>2692,4<br>2717,8<br>2743,2<br>2768,6<br>2794,0<br>2819,4<br>2844,8<br>2870,2<br>2855,6<br>2921,0 | Code<br>width<br>K 91<br>K 92<br>K 93<br>K 94<br>K 95<br>K 96<br>K 97<br>K 100<br>K 101<br>K 102<br>K 103<br>K 104<br>K 105<br>K 106<br>K 107<br>K 108<br>K 100<br>K 110<br>K 111<br>K 112<br>K 113<br>K 114<br>K 115 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 660,4<br>685,8<br>711,2<br>736,6<br>762,0<br>787,4<br>812,8<br>838,2<br>863,6<br>889,0<br>914,4<br>1066,8<br>1092,2<br>1117,6<br>1041,4<br>1066,8<br>1092,2<br>1117,6<br>1143,0<br>1168,4<br>1193,8<br>1292,2<br>1177,6<br>1295,4<br>1307,0<br>1295,4<br>1307,0<br>1295,4<br>1307,0<br>1295,4<br>1307,0<br>1422,4<br>1473,2<br>1498,6<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1524,0<br>1 | K 26<br>K 27<br>K 28<br>K 30<br>K 31<br>K 33<br>K 33<br>K 33<br>K 33<br>K 33<br>K 33<br>K 33                                                                                                                                     | 2946,4<br>2977,8<br>2997,2<br>3022,6<br>3048,0                                                                                                                                                                                                                           | K 116<br>K 117<br>K 118<br>K 119<br>K 120                                                                                                                                                                             |

### SERIES 5935 - 5936 - 5935 vacuum

| Width                                   | Code                                      | Width                         | Code                                        | Width                                   | Code                                       | Nominal<br>Width                    |
|-----------------------------------------|-------------------------------------------|-------------------------------|---------------------------------------------|-----------------------------------------|--------------------------------------------|-------------------------------------|
| nommm<br>76,2                           | width<br>K 03                             | nommm<br>1790,7               | width<br>K 70,50                            | nommm<br>3505,2                         | width<br>K 138                             | OF CHAIN                            |
| 95,3<br>114,3                           | K 3,75<br>K 4,50                          | 1809,8<br><mark>1828,8</mark> | K 71,25<br><mark>K 72</mark>                | 3524,3<br>3543,3                        | K 138,75<br>K 139,50                       |                                     |
| 133,4<br>152,4                          | K 5,25<br>K 06                            | 1847,9<br>1866,9              | K 72,75<br>K 73,50                          | 3562,4<br>3581,4                        | K 140,25<br>K 141*                         |                                     |
| 171,5<br>190,5                          | K 6,75<br>K 7,50                          | 1886,0<br>1905,0              | K 74,25<br>K 75*                            | 3600,5<br>3619,5                        | K 141,75<br>K 142,50                       |                                     |
| 209,6<br>228,6                          | K 8,25<br>K 09*                           | 1924,1<br>1943,1              | K 75,75<br>K 76,50                          | 3638,6<br>3657,6                        | K 143,25<br>K 144                          |                                     |
| 247,7<br>266,7<br>285,8                 | K 9,75<br>K 10,50<br>K 11,25              | 1962,2<br>1981,2<br>2000,3    | K 77,25<br><mark>K 78</mark><br>K 78,75     | 3676,7<br>3695,7<br>3714,8              | K 144,75<br>K 145,50<br>K 146,25           |                                     |
| 304,8<br>323,9                          | K 12*<br>K 12,75                          | 2000,3<br>2019,3<br>2038,4    | K 79,50<br>K 80,25                          | 3733,8<br>3752,9                        | K 140,23<br>K 147*<br>K 147,75             | Standard widths                     |
| 342,9<br>362,0                          | K 13,50<br>K 14,25                        | 2057,4<br>2076,5              | K 81*<br>K 81,75                            | 3771,9<br>3791,0                        | K 148,50<br>K 149,25                       | in <mark>blue</mark>                |
| 381,0<br>400,1                          | <mark>K 15</mark> *<br>K 15,75            | 2095,5<br>2114,6              | K 82,50<br>K 83,25                          | 3810,0<br>3829,1                        | <mark>K 150</mark><br>K 150,75             |                                     |
| 419,1<br>438,2                          | K 16,50<br>K 17,25                        | <mark>2133,6</mark><br>2152,7 | <mark>K 84</mark><br>K 84,75                | 3848,1<br>3867,2                        | K 151,50<br>K 152,25                       |                                     |
| 457,2<br>476,3                          | <mark>K 18</mark><br>K 18,75              | 2171,7<br>2190,8              | K 85,50<br>K 86,25                          | 3886,2<br>3905,3                        | K 153*<br>K 153,75                         |                                     |
| 495,3<br>514,4                          | K 19,50<br>K 20,25                        | 2209,8<br>2228,9              | K 87*<br>K 87,75                            | 3924,3<br>3943,4                        | K 154,50<br>K 155,25                       |                                     |
| <mark>533,4</mark><br>552,5<br>571,5    | <mark>K 21*</mark><br>K 21,75<br>K 22,50  | 2247,9<br>2267,0<br>2286,0    | K 88,50<br>K 89,25<br><mark>K 90</mark>     | 3962,4<br>3981,5<br>4000,5              | <mark>K 156</mark><br>K 156,75<br>K 157,50 | Other widths                        |
| 590,6<br>609,6                          | K 23,25<br>K 24                           | 2305,1<br>2324,1              | K 90,75<br>K 91,50                          | 4000,5<br>4019,6<br>4038,6              | K 157,50<br>K 158,25<br>K 159*             | available <b>on</b><br>request      |
| 628,7<br>647,7                          | K 24,75<br>K 25,50                        | 2343,2<br>2362,2              | K 92,25<br>K 93*                            | 4057,7<br>4076,7                        | K 159,75<br>K 160,50                       |                                     |
| 666,8<br>685,8                          | K 26,25<br>K 27*                          | 2381,3<br>2400,3              | K 93,75<br>K 94,50                          | 4095,8<br>4114,8                        | K 161,25<br>K 162                          |                                     |
| 704,9<br>723,9                          | K 27,75<br>K 28,50                        | 2419,4<br><mark>2438,4</mark> | K 95,25<br><mark>K 96</mark>                | 4133,9<br>4152,9                        | K 162,75<br>K 163,50                       |                                     |
| 743,0<br><mark>762,0</mark><br>781,1    | K 29,25<br>K 30<br>K 20,75                | 2457,5<br>2476,5<br>2495,6    | K 96,75<br>K 97,50<br>K 98,25               | 4172,0<br>4191,0                        | K 164,25<br>K 165*                         | TOLERANCES                          |
| 800,1<br>819,2                          | K 30,75<br>K 31,50<br>K 32,25             | 2493,0<br>2514,6<br>2533,7    | K 99,25<br>K 99*<br>K 99,75                 | 4210,1<br>4229,1<br>4248,2              | K 165,75<br>K 166,50<br>K 167,25           | CHAIN WIDTH<br>The indicated        |
| 838,2<br>857,3                          | K 33*<br>K 33,75                          | 2552,7<br>2571,8              | K 100,50<br>K 101,25                        | 4267,2<br>4286,3                        | K 168<br>K 168,75                          | widths are nomina                   |
| 876,3<br>895,4                          | K 34,50<br>K 35,25                        | 2590,8<br>2609,9              | <mark>K 102</mark><br>K 102,75              | 4305,3<br>4324,4                        | K 169,50<br>K 170,25                       | dimensions. For<br>certified widths |
| <mark>914,4</mark><br>933,5             | <mark>K 36</mark><br>K 36,75              | 2628,9<br>2648,0              | K 103,50<br>K 104,25                        | <b>4343,4</b><br>4362,5                 | <mark>K 171*</mark><br>K 171,75            | and tolerances refer to our         |
| 952,5<br>971,6                          | K 37,50<br>K 38,25                        | 2667,0<br>2686,1              | K 105*<br>K 105,75                          | 4381,5<br>4400,6                        | K 172,50<br>K 173,25                       | Technical<br>Department             |
| 990,6<br>1009,7                         | K 39*<br>K 39,75                          | 2705,1<br>2724,2              | K 106,50<br>K 107,25                        | <mark>4419,6</mark><br>4438,7<br>4457,7 | K 174<br>K 174,75<br>K 175 FO              |                                     |
| 1028,7<br>1047,8<br><mark>1066,8</mark> | K 40,50<br>K 41,25<br><mark>K 42</mark>   | 2743,2<br>2762,3<br>2781,3    | <mark>K 108</mark><br>K 108,75<br>K 109,50  | 4437,7<br>4476,8<br>4495,8              | K 175,50<br>K 176,25<br>K 177*             |                                     |
| 1085,9<br>1104,9                        | K 42,75<br>K 43,50                        | 2800,4<br>2819,4              | K 110,25<br>K 111*                          | * = stand                               |                                            |                                     |
| 1124,0<br>1143,0                        | K 44,25<br>K 45*                          | 2838,5<br>2857,5              | K 111,75<br>K 112,50                        | for 59                                  |                                            |                                     |
| 1162,1<br>1181,1                        | K 45,75<br>K 46,50                        | 2876,6<br>2895,6              | K 113,25<br>K 114                           |                                         |                                            |                                     |
| 1200,2<br>1219,2                        | K 47,25<br>K 48                           | 2914,7<br>2933,7              | K 114,75<br>K 115,50                        |                                         |                                            |                                     |
| 1238,3<br>1257,3<br>1276,4              | K 48,75<br>K 49,50<br>K 50,25             | 2952,8<br>2971,8<br>2990,9    | K 116,25<br><mark>K 117*</mark><br>K 117,75 |                                         |                                            | EXAMPLE OF<br>CODENUMBER            |
| <b>1295,4</b><br>1314,5                 | <mark>K 51*</mark><br>K 51,75             | 3009,9<br>3029,0              | K 118,50<br>K 119,25                        |                                         |                                            | 5706 HP KO                          |
| 1333,5<br>1352,6                        | K 52,50<br>K 53,25                        | <b>3048,0</b><br>3067,1       | K 120<br>K 120,75                           |                                         |                                            | Series                              |
| <b>1371,6</b><br>1390,7                 | K 54<br>K 54,75                           | 3086,1<br>3105,2              | K 121,50<br>K 122,25                        |                                         |                                            | Material<br>HP, WHP,                |
| 1409,7<br>1428,8<br>1447,8              | K 55,50<br>K 56,25<br><mark>K 57</mark> * | 3124,2<br>3143,3<br>3162,3    | <mark>K 123*</mark><br>K 123,75<br>K 124,50 |                                         |                                            | LF, HT<br>Width cod                 |
| 1466,9<br>1485,9                        | K 57,75<br>K 58,50                        | 3181,4<br>3200,4              | K 125,25<br>K 126                           |                                         |                                            | (inch                               |
| 1505,0<br>1524,0                        | K 59,25<br>K 60                           | 3219,5<br>3238,5              | K 126,75<br>K 127,50                        |                                         |                                            |                                     |
| 1543,1<br>1562,1                        | K 60,75<br>K 61,50                        | 3257,6<br><mark>3276,6</mark> | K 128,25<br><mark>K 129</mark> *            |                                         |                                            |                                     |
| 1581,2<br>1600,2                        | K 62,25<br>K 63*                          | 3295,7<br>3314,7              | K 129,75<br>K 130,50                        |                                         |                                            |                                     |
| 1619,3<br>1638,3<br>1657 4              | K 63,75<br>K 64,50<br>K 65 25             | 3333,8<br>3352,8<br>2271.0    | K 131,25<br>K 132<br>K 122 75               |                                         |                                            | CHAINS                              |
| 1657,4<br><mark>1676,4</mark><br>1695,5 | K 65,25<br><mark>K 66</mark><br>K 66,75   | 3371,9<br>3390,9<br>3410,0    | K 132,75<br>K 133,50<br>K 134,25            |                                         |                                            | 5705-5706<br>see page 38            |
| 1714,5<br>1733,6                        | K 67,50<br>K 68,25                        | 3410,0<br>3429,0<br>3448,1    | K 134,25<br>K 135*<br>K 135,75              |                                         |                                            | 5935-5936-5935<br>see page 26       |
| 1752,6<br>1771,7                        | K 69,25<br>K 69*<br>K 69,75               | 3467,1<br>3486,2              | K 136,50<br>K 137,25                        |                                         |                                            |                                     |
| .,.                                     |                                           |                               |                                             |                                         |                                            |                                     |

he indicated idths are nominal imensions. For ertified widths nd tolerances efer to our echnical epartment

| EXAMPLE<br>CODENUM          |                    |
|-----------------------------|--------------------|
| 5706 H                      | P K06              |
| ا<br>Series                 |                    |
| Materia<br>HP, WHF<br>LF, H | р,                 |
| Wi                          | dth code<br>(inch) |
|                             |                    |

### HAINS

705-5706 ee page 38 935-5936-5935v ee page 26

NOMINAL

# series **5996 - 5997**

| NOMINAL              |                             |                             |                                |                             |                         |                               |                  |                  |
|----------------------|-----------------------------|-----------------------------|--------------------------------|-----------------------------|-------------------------|-------------------------------|------------------|------------------|
| WIDTH                | Width                       | Code                        | Width                          | Code                        | Width                   | Code                          | Width            | Code             |
| OF CHAIN             | nommm                       | width                       | nommm                          | width                       | nommm                   | width                         | nommm            | width            |
|                      | 114,3                       | K 4,5                       | 1257,3                         | K 49,5                      | 2400,3                  | K 94,5                        | 3543,3           | K 139,5          |
|                      | 127,0                       | K 05                        | 1270,0                         | K 50                        | 2413,0                  | K 95                          | 3556,0           | K 140<br>K 140,5 |
|                      | 139,7<br>152,4              | K 5,5<br>K 06               | 1282,7<br>1295,4               | K 50,5<br>K 51              | 2425,7<br>2438,4        | K 95,5<br><mark>K 96</mark>   | 3568,7<br>3581,4 | K 140,5<br>K 141 |
|                      | 165,1                       | K 6,5                       | 1308,1                         | K 51,5                      | 2451,1                  | K 96,5                        | 3594,1           | K 141,5          |
|                      | 177,8                       | K 07                        | 1320,8                         | K 52                        | 2463,8                  | K 97                          | 3606,8           | K 142            |
|                      | 190,5<br>203,2              | K 7,5<br>K 08               | 1333,5<br>1346,2               | K 52,5<br>K 53              | 2476,5<br>2489,2        | K 97,5<br>K 98                | 3619,5<br>3632,2 | K 142,5<br>K 143 |
|                      | 203,2                       | K 8,5                       | 1340,2                         | K 53,5                      | 2409,2<br>2501,9        | K 98,5                        | 3644,9           | K 143<br>K 143,5 |
|                      | 228,6                       | K 09                        | 1371,6                         | K 54                        | 2514,6                  | K 99                          | 3657,6           | K 144            |
|                      | 241,3                       | K 9,5                       | 1384,3                         | K 54,5                      | 2527,3                  | K 99,5                        |                  |                  |
|                      | 254,0                       | K 10                        | 1397,0                         | K 55<br>V 66 6              | 2540,0                  | K 100 F                       |                  |                  |
| Standard widths      | 266,7<br>279,4              | K 10,5<br>K 11              | 1409,7<br>1422,4               | K 55,5<br>K 56              | 2552,7<br>2565,4        | K 100,5<br>K 101              |                  |                  |
| in blue              | 292,1                       | K 11,5                      | 1435,1                         | K 56,5                      | 2578,1                  | K 101,5                       |                  |                  |
|                      | 304,8                       | K 12                        | 1447,8                         | K 57                        | 2590,8                  | K 102                         |                  |                  |
|                      | 317,5<br>330,2              | K 12,5<br>K 13              | 1460,5<br>1473,2               | K 57,5<br>K 58              | 2603,5<br>2616,2        | K 102,5<br>K 103              |                  |                  |
|                      | 342,9                       | K 13,5                      | 1475,2                         | K 58,5                      | 2628,9                  | K 103,5                       |                  |                  |
|                      | 355,6                       | K 14                        | 1498,6                         | K 59                        | 2641,6                  | K 104                         |                  |                  |
|                      | 368,3                       | K 14,5                      | 1511,3                         | K 59,5                      | 2654,3                  | K 104,5                       |                  |                  |
|                      | 381,0<br>393,7              | K 15<br>K 15,5              | 1 <mark>524,0</mark><br>1536,7 | <mark>K 60</mark><br>K 60,5 | 2667,0<br>2679,7        | K 105<br>K 105,5              |                  |                  |
|                      | 406,4                       | K 15,5<br>K 16              | 1549,4                         | K 61                        | 2692,4                  | K 105,5<br>K 106              |                  |                  |
|                      | 419,1                       | K 16,5                      | 1562,1                         | K 61,5                      | 2705,1                  | K 106,5                       |                  |                  |
| Other widths         | 431,8                       | K 17                        | 1574,8                         | K 62                        | 2717,8                  | K 107                         |                  |                  |
| available <b>on</b>  | 444,5<br><b>457,2</b>       | K 17,5<br><mark>K 18</mark> | 1587,5<br>1600,2               | K 62,5<br>K 63              | 2730,5<br>2743,2        | K 107,5<br><mark>K 108</mark> |                  |                  |
| request              | 469,9                       | K 18,5                      | 1612,9                         | K 63,5                      | 2755,9                  | K 108,5                       |                  |                  |
|                      | 482,6                       | K 19                        | 1625,6                         | K 64                        | 2768,6                  | K 109                         |                  |                  |
|                      | 495,3                       | K 19,5                      | 1638,3                         | K 64,5                      | 2781,3                  | K 109,5                       |                  |                  |
|                      | 508,0<br>520,7              | K 20<br>K 20,5              | 1651,0<br>1663,7               | K 65<br>K 65,5              | 2794,0<br>2806,7        | K 110<br>K 110,5              |                  |                  |
|                      | 533,4                       | K 20,5                      | 1676,4                         | K 66                        | 2819,4                  | K 111                         |                  |                  |
|                      | 546,1                       | K 21,5                      | 1689,1                         | K 66,5                      | 2832,1                  | K 111,5                       |                  |                  |
|                      | 558,8                       | K 22                        | 1701,8                         | K 67                        | 2844,8                  | K 112                         |                  |                  |
| TOLERANCES           | 571,5<br>584,2              | K 22,5<br>K 23              | 1714,5<br>1727,2               | K 67,5<br>K 68              | 2857,5<br>2870,2        | K 112,5<br>K 113              |                  |                  |
| CHAIN WIDTH          | 596,9                       | K 23,5                      | 1739,9                         | K 68,5                      | 2882,9                  | K 113,5                       |                  |                  |
| The indicated        | 609,6                       | K 24                        | 1752,6                         | K 69                        | 2895,6                  | K 114                         |                  |                  |
| widths are nominal   | 622,3                       | K 24,5                      | 1765,3                         | K 69,5                      | 2908,3                  | K 114,5                       |                  |                  |
| dimensions. For      | 635,0<br>647,7              | K 25<br>K 25,5              | 1778,0<br>1790,7               | K 70<br>K 70,5              | 2921,0<br>2933,7        | K 115<br>K 115,5              |                  |                  |
| certified widths     | 660,4                       | K 26                        | 1803,4                         | K 70,5                      | 2946,4                  | K 116                         |                  |                  |
| and tolerances       | 673,1                       | K 26,5                      | 1816,1                         | K 71,5                      | 2959,1                  | K 116,5                       |                  |                  |
| refer to our         | 685,8                       | K 27                        | 1828,8                         | K 72                        | 2971,8                  | K 117                         |                  |                  |
| Technical            | 698,5<br>711,2              | K 27,5<br>K 28              | 1841,5<br>1854,2               | K 72,5<br>K 73              | 2984,5<br>2997,2        | K 117,5<br>K 118              |                  |                  |
| Department           | 723,9                       | K 28,5                      | 1866,9                         | K 73,5                      | 3009,9                  | K 118,5                       |                  |                  |
|                      | 736,6                       | K 29                        | 1879,6                         | K 74                        | 3022,6                  | K 119                         |                  |                  |
|                      | 749,3<br><mark>762,0</mark> | K 29,5<br><mark>K 30</mark> | 1892,3<br>1905,0               | K 74,5<br>K 75              | 3035,3                  | K 119,5<br><mark>K 120</mark> |                  |                  |
|                      | 762,0                       | K 30,5                      | 1905,0                         | K 75,5                      | <b>3048,0</b><br>3060,7 | K 120,5                       |                  |                  |
|                      | 787,4                       | K 31                        | 1930,4                         | K 76                        | 3073,4                  | K 121                         |                  |                  |
|                      | 800,1                       | K 31,5                      | 1943,1                         | K 76,5                      | 3086,1                  | K 121,5                       |                  |                  |
|                      | 812,8<br>825,5              | K 32<br>K 32,5              | 1955,8<br>1968,5               | K 77<br>K 77,5              | 3098,8<br>3111,5        | K 122<br>K 122,5              |                  |                  |
|                      | 838,2                       | K 32,5<br>K 33              | 1981,2                         | K 77,3<br>K 78              | 3124,2                  | K 122,5<br>K 123              |                  |                  |
|                      | 850,9                       | K 33,5                      | 1993,9                         | K 78,5                      | 3136,9                  | K 123,5                       |                  |                  |
|                      | 863,6                       | K 34                        | 2006,6                         | K 79                        | 3149,6                  | K 124                         |                  |                  |
|                      | 876,3<br>889,0              | K 34,5<br>K 35              | 2019,3<br>2032,0               | K 79,5<br>K 80              | 3162,3<br>3175,0        | K 124,5<br>K 125              |                  |                  |
| EXAMPLE OF           | 901,7                       | K 35,5                      | 2044,7                         | K 80,5                      | 3187,7                  | K 125,5                       |                  |                  |
| CODENUMBER           | 914,4                       | K 36                        | 2057,4                         | K 81                        | 3200,4                  | K 126                         |                  |                  |
| 5996 LF K25          | 927,1<br>939,8              | K 36,5<br>K 37              | 2070,1<br>2082,8               | K 81,5<br>K 82              | 3213,1<br>3225,8        | K 126,5<br>K 127              |                  |                  |
|                      | 952,5                       | K 37,5                      | 2002,0                         | K 82,5                      | 3238,5                  | K 127<br>K 127,5              |                  |                  |
| Series               | 965,2                       | K 38                        | 2108,2                         | K 83                        | 3251,2                  | K 128                         |                  |                  |
| Material             | 977,9                       | K 38,5                      | 2120,9                         | K 83,5                      | 3263,9                  | K 128,5                       |                  |                  |
| LF, HT, WHT<br>WLT   | 990,6<br>1003,3             | K 39<br>K 39,5              | 2133,6<br>2146,3               | <mark>K 84</mark><br>K 84,5 | 3276,6<br>3289,3        | K 129<br>K 129,5              |                  |                  |
|                      | 1016,0                      | K 40                        | 2140,5                         | K 85                        | 3302,0                  | K 127,5                       |                  |                  |
| Width code<br>(inch) | 1028,7                      | K 40,5                      | 2171,7                         | K 85,5                      | 3314,7                  | K 130,5                       |                  |                  |
| (Incir)              | 1041,4                      | K 41                        | 2184,4                         | K 86                        | 3327,4                  | K 131                         |                  |                  |
|                      | 1054,1<br>1066,8            | K 41,5<br><mark>K 42</mark> | 2197,1<br>2209,8               | K 86,5<br>K 87              | 3340,1<br>3352,8        | K 131,5<br><mark>K 132</mark> |                  |                  |
|                      | 1079,5                      | K 42,5                      | 2222,5                         | K 87,5                      | 3365,5                  | K 132,5                       |                  |                  |
|                      | 1092,2                      | K 43                        | 2235,2                         | K 88                        | 3378,2                  | K 133                         |                  |                  |
|                      | 1104,9                      | K 43,5                      | 2247,9                         | K 88,5                      | 3390,9                  | K 133,5                       |                  |                  |
|                      | 1117,6<br>1130,3            | K 44<br>K 44,5              | 2260,6<br>2273,3               | K 89<br>K 89,5              | 3403,6<br>3416,3        | K 134<br>K 134,5              |                  |                  |
| CUANC                | 1143,0                      | K 45                        | 2286,0                         | K 90                        | 3429,0                  | K 134,5<br>K 135              |                  |                  |
| CHAINS               | 1155,7                      | K 45,5                      | 2298,7                         | K 90,5                      | 3441,7                  | K 135,5                       |                  |                  |
| 5996-5997            | 1168,4                      | K 46                        | 2311,4                         | K 91<br>K 01 5              | 3454,4                  | K 136<br>K 126 5              |                  |                  |
| see page 48          | 1181,1<br>1193,8            | K 46,5<br>K 47              | 2324,1<br>2336,8               | K 91,5<br>K 92              | 3467,1<br>3479,8        | K 136,5<br>K 137              |                  |                  |
|                      | 1206,5                      | K 47,5                      | 2349,5                         | K 92,5                      | 3492,5                  | K 137,5                       |                  |                  |
|                      | 1219,2                      | K 48                        | 2362,2                         | K 93                        | 3505,2                  | K 138                         |                  |                  |
|                      | 1231,9                      | K 48,5                      | 2374,9                         | K 93,5                      | 3517,9                  | K 138,5                       |                  |                  |
|                      | 1244,6                      | K 49                        | 2387,6                         | K 94                        | 3530,6                  | K 139                         |                  |                  |

62

Nominal Width

**OF CHAIN** 

# series **5998**

| Width                                                    | Code                                               | Width                                                           | Code                                               | Width                                                          | Code                                                     |
|----------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|
| nom mm                                                   | width                                              | nommm                                                           | width                                              | nommm                                                          | width                                                    |
| 127,0                                                    | K 05                                               | 1270,0                                                          | K 50                                               | 2413,0                                                         | K 95                                                     |
| 139,7                                                    | K 5,5                                              | 1282,7                                                          | K 50,5                                             | 2425,7                                                         | K 95,5                                                   |
| <b>152,4</b>                                             | <mark>K 06</mark>                                  | 1295,4                                                          | K 51                                               | <b>2438,4</b>                                                  | <mark>K 96</mark>                                        |
| 165,1                                                    | K 6,5                                              | 1308,1                                                          | K 51,5                                             | 2451,1                                                         | K 96,5                                                   |
| 177,8                                                    | K 07                                               | 1320,8                                                          | K 52                                               | 2463,8                                                         | K 97                                                     |
| 190,5                                                    | K 7,5                                              | 1333,5                                                          | K 52,5                                             | 2476,5                                                         | K 97,5                                                   |
| 203,2                                                    | K 08                                               | 1346,2                                                          | K 53                                               | 2489,2                                                         | K 98                                                     |
| 215,9                                                    | K 8,5                                              | 1358,9                                                          | K 53,5                                             | 2501,9                                                         | K 98,5                                                   |
| 228,6                                                    | K 09                                               | <b>1371,6</b>                                                   | <mark>K 54</mark>                                  | 2514,6                                                         | K 99                                                     |
| 241,3                                                    | K 9,5                                              | 1384,3                                                          | K 54,5                                             | 2527,3                                                         | K 99,5                                                   |
| 254,0                                                    | K 10                                               | 1397,0                                                          | K 55                                               | 2540,0                                                         | K 100                                                    |
| 266,7                                                    | K 10,5                                             | 1409,7                                                          | K 55,5                                             | 2552,7                                                         | K 100,5                                                  |
| 279,4                                                    | K 11                                               | 1422,4                                                          | K 56                                               | 2565,4                                                         | K 101                                                    |
| 292,1                                                    | K 11,5                                             | 1435,1                                                          | K 56,5                                             | 2578,1                                                         | K 101,5                                                  |
| <b>304,</b> 8                                            | K 12                                               | 1447,8                                                          | K 57                                               | <b>2590,8</b>                                                  | K 102                                                    |
| 317,5                                                    | K 12,5                                             | 1460,5                                                          | K 57,5                                             | 2603,5                                                         | K 102,5                                                  |
| 330,2                                                    | K 13                                               | 1473,2                                                          | K 58                                               | 2616,2                                                         | K 103                                                    |
| 342,9                                                    | K 13,5                                             | 1485,9                                                          | K 58,5                                             | 2628,9                                                         | K 103,5                                                  |
| 355,6                                                    | K 14                                               | 1498,6                                                          | K 59                                               | 2641,6                                                         | K 104                                                    |
| 368,3                                                    | K 14,5                                             | 1511,3                                                          | K 59,5                                             | 2654,3                                                         | K 104,5                                                  |
| 381,0                                                    | K 15                                               | <mark>1524,0</mark>                                             | <mark>K 60</mark>                                  | 2667,0                                                         | K 105                                                    |
| 393,7                                                    | K 15,5                                             | 1536,7                                                          | K 60,5                                             | 2679,7                                                         | K 105,5                                                  |
| 406,4                                                    | K 16                                               | 1549,4                                                          | K 61                                               | 2692,4                                                         | K 106                                                    |
| 419,1                                                    | K 16,5                                             | 1562,1                                                          | K 61,5                                             | 2705,1                                                         | K 106,5                                                  |
| 431,8                                                    | K 17                                               | 1574,8                                                          | K 62                                               | 2717,8                                                         | K 107                                                    |
| 444,5                                                    | K 17,5                                             | 1587,5                                                          | K 62,5                                             | 2730,5                                                         | K 107,5                                                  |
| <b>457,2</b>                                             | <mark>K 18</mark>                                  | 1600,2                                                          | K 63                                               | 2743,2                                                         | K 108                                                    |
| 469,9                                                    | K 18,5                                             | 1612,9                                                          | K 63,5                                             | 2755,9                                                         | K 108,5                                                  |
| 482,6                                                    | K 19                                               | 1625,6                                                          | K 64                                               | 2768,6                                                         | K 109                                                    |
| 495,3                                                    | K 19,5                                             | 1638,3                                                          | K 64,5                                             | 2781,3                                                         | K 109,5                                                  |
| 508,0                                                    | K 20                                               | 1651,0                                                          | K 65                                               | 2794,0                                                         | K 110                                                    |
| 520,7                                                    | K 20,5                                             | 1663,7                                                          | K 65,5                                             | 2806,7                                                         | K 110,5                                                  |
| 533,4                                                    | K 21                                               | 1676,4                                                          | <mark>K 66</mark>                                  | 2819,4                                                         | K 111                                                    |
| 546,1                                                    | K 21,5                                             | 1689,1                                                          | K 66,5                                             | 2832,1                                                         | K 111,5                                                  |
| 558,8                                                    | K 22                                               | 1701,8                                                          | K 67                                               | 2844,8                                                         | K 112                                                    |
| 571,5                                                    | K 22,5                                             | 1714,5                                                          | K 67,5                                             | 2857,5                                                         | K 112,5                                                  |
| 584,2                                                    | K 23                                               | 1727,2                                                          | K 68                                               | 2870,2                                                         | K 113                                                    |
| 596,9                                                    | K 23,5                                             | 1739,9                                                          | K 68,5                                             | 2882,9                                                         | K 113,5                                                  |
| 609,6                                                    | K 24                                               | 1752,6                                                          | K 69                                               | 2895,6                                                         | K 114                                                    |
| 622,3                                                    | K 24,5                                             | 1765,3                                                          | K 69,5                                             | 2908,3                                                         | K 114,5                                                  |
| 635,0                                                    | K 25                                               | 1778,0                                                          | K 70                                               | 2921,0                                                         | K 115                                                    |
| 647,7                                                    | K 25,5                                             | 1790,7                                                          | K 70,5                                             | 2933,7                                                         | K 115,5                                                  |
| 660,4                                                    | K 26                                               | 1803,4                                                          | K 71                                               | 2946,4                                                         | K 116                                                    |
| 673,1                                                    | K 26,5                                             | 1816,1                                                          | K 71,5                                             | 2959,1                                                         | K 116,5                                                  |
| 685,8                                                    | K 27                                               | 1828,8                                                          | <mark>K 72</mark>                                  | 2971,8                                                         | K 117                                                    |
| 698,5                                                    | K 27,5                                             | 1841,5                                                          | K 72,5                                             | 2984,5                                                         | K 117,5                                                  |
| 711,2                                                    | K 28                                               | 1854,2                                                          | K 73                                               | 2997,2                                                         | K 118                                                    |
| 723,9                                                    | K 28,5                                             | 1866,9                                                          | K 73,5                                             | 3009,9                                                         | K 118,5                                                  |
| 736,6                                                    | K 29                                               | 1879,6                                                          | K 74                                               | 3022,6                                                         | K 119                                                    |
| 749,3                                                    | K 29,5                                             | 1892,3                                                          | K 74,5                                             | 3035,3                                                         | K 119,5                                                  |
| 762,0                                                    | <mark>K 30</mark>                                  | 1905,0                                                          | K 75                                               | <b>3048,0</b>                                                  | K 120                                                    |
| 774,7                                                    | K 30,5                                             | 1917,7                                                          | K 75,5                                             | 3060,7                                                         | K 120,5                                                  |
| 787,4                                                    | K 31                                               | 1930,4                                                          | K 76                                               | 3073,4                                                         | K 121                                                    |
| 800,1                                                    | K 31,5                                             | 1943,1                                                          | K 76,5                                             | 3086,1                                                         | K 121,5                                                  |
| 812,8                                                    | K 32                                               | 1955,8                                                          | K 77                                               | 3098,8                                                         | K 122                                                    |
| 825,5                                                    | K 32,5                                             | 1968,5                                                          | K 77,5                                             | 3111,5                                                         | K 122,5                                                  |
| 838,2                                                    | K 33                                               | <b>1981,2</b>                                                   | K 78                                               | 3124,2                                                         | K 123                                                    |
| 850,9                                                    | K 33,5                                             | 1993,9                                                          | K 78,5                                             | 3136,9                                                         | K 123,5                                                  |
| 863,6                                                    | K 34                                               | 2006,6                                                          | K 79                                               | 3149,6                                                         | K 124                                                    |
| 876,3<br>889,0<br>901,7<br>914,4<br>927,1                | K 34,5<br>K 35<br>K 35,5<br>K 36,5<br>K 36,5       | 2009,3<br>2019,3<br>2032,0<br>2044,7<br>2057,4<br>2070,1        | K 79,5<br>K 80<br>K 80,5<br>K 81<br>K 81,5         | 3162,3<br>3175,0<br>3187,7<br><b>3200,4</b><br>3213,1          | K 124,5<br>K 125,5<br>K 125,5<br>K 126,5<br>K 126,5      |
| 939,8<br>952,5<br>965,2<br>977,9<br>990,6                | K 30,5<br>K 37<br>K 37,5<br>K 38<br>K 38,5<br>K 39 | 2082,8<br>2095,5<br>2108,2<br>2120,9<br>2133,6                  | K 81,5<br>K 82<br>K 82,5<br>K 83<br>K 83,5<br>K 84 | 3225,8<br>3238,5<br>3251,2<br>3263,9<br>3276,6                 | K 128,5<br>K 127<br>K 127,5<br>K 128<br>K 128,5<br>K 129 |
| 1003,3<br>1016,0<br>1028,7<br>1041,4<br>1054,1           | K 39<br>K 39,5<br>K 40<br>K 40,5<br>K 41<br>K 41,5 | 213,0<br>2146,3<br>2159,0<br>2171,7<br>2184,4<br>2197,1         | K 84,5<br>K 85<br>K 85,5<br>K 86<br>K 86,5         | 3270,0<br>3289,3<br>3302,0<br>3314,7<br>3327,4<br>3340,1       | K 129<br>K 129,5<br>K 130<br>K 130,5<br>K 131<br>K 131,5 |
| 1034,1<br>1066,8<br>1079,5<br>1092,2<br>1104,9<br>1117,6 | K 41,3<br>K 42<br>K 42,5<br>K 43<br>K 43,5<br>K 44 | 2209,8<br>2222,5<br>2235,2<br>2247,9<br>2260,6                  | K 80,5<br>K 87<br>K 87,5<br>K 88<br>K 88,5<br>K 89 | <b>3352,8</b><br>3365,5<br>3378,2<br>3390,9<br>3403,6          | K 131,5<br>K 132<br>K 132,5<br>K 133<br>K 133,5<br>K 134 |
| 1117,0<br>1130,3<br>1143,0<br>1155,7<br>1168,4<br>1181,1 | K 44<br>K 44,5<br>K 45<br>K 45,5<br>K 46<br>K 46,5 | 2200,0<br>2273,3<br><b>2286,0</b><br>2298,7<br>2311,4<br>2324,1 | K 89<br>K 89,5<br>K 90<br>K 90,5<br>K 91<br>K 91,5 | 3416,3<br>3429,0<br>3441,7<br>3454,4<br>3467,1                 | K 134<br>K 134,5<br>K 135<br>K 135,5<br>K 136<br>K 136,5 |
| 1193,8<br>1206,5<br>1219,2<br>1231,9<br>1244,6           | K 40,5<br>K 47<br>K 47,5<br>K 48<br>K 48,5<br>K 49 | 2324,1<br>2336,8<br>2349,5<br>2362,2<br>2374,9<br>2387,6        | K 91,5<br>K 92<br>K 92,5<br>K 93<br>K 93,5<br>K 94 | 340,1<br>3479,8<br>3492,5<br><b>3505,2</b><br>3517,9<br>3530,6 | K 130,5<br>K 137<br>K 137,5<br>K 138<br>K 138,5<br>K 139 |
| 1257,3                                                   | K 49,5                                             | 2400,3                                                          | K 94,5                                             | 3543,3                                                         | K 139,5                                                  |

| 63 |
|----|

Width

nom.-mm

3556,0 3568,7 3581,4 3594,1 3606,8 3619,5 3632,2 3644,9

3657,6

Code

width

K 140 K 140,5 K 141 K 141,5 K 142,5 K 142,5 K 143,5 K 144

Standard widths in **blue** 

Other widths available **on** request

TOLERANCES CHAIN WIDTH

The indicated widths are nominal dimensions. For certified widths and tolerances refer to our Technical Department

EXAMPLE OF CODENUMBER 5998 WHT K12 Series | Material WHT,WLT Width code (inch)

CHAINS 5998 see page 52

### SERIES 6391 - 6392

NOMINAL WIDTH **OF CHAIN** 

All indicated

widths are standard

Nom width without tension plates - mm

75

150 225

300 375

450

825 900 975

1050 1125

1950

2025

2775 2850

2925

3000

The indicated values are for chain widths without tension plates.

To determine the width with tension plates these dimensions should be added with the widths of the tension plates (5 mm for every row of tension plates).

The number of rows of tension plates depends on the total tension in the chain. See page 71.

Example of calculation of definite width of a chain with 2 rows of tension plates

Definitive width = Nominal width without tension plates (300 mm) + 2 rows of tension plates (10 mm) = 310 mm



### TOLERANCES CHAIN WIDTH

Other widths

available on

request

The indicated widths are nominal dimensions. For certified widths and tolerances refer to our Technical Department

EXAMPLE OF CODENUMBER R 6390 WHT K310

### Series Material

WHT, BHT, YSM, WLT Width incl. tension plates (mm)

CHAINS

6390-6391-6392 see page 44

NOMINAL

WIDTH OF CHAIN

# series **7705 - 7706**

| Width<br>nommm               | Code<br>width               | Width<br>nommm                | Code<br>width               | Width<br>nommm                | Code<br>width                 |
|------------------------------|-----------------------------|-------------------------------|-----------------------------|-------------------------------|-------------------------------|
| 76,2                         | K 03                        | 1231,9                        | K 48,5                      | 2374,9                        | K 93,5                        |
| 82,6<br>114,3                | K 3,25<br>K 4,5             | 1244,6<br>1257,3              | K 49<br>K 49,5              | 2387,6<br>2400,3              | K 94<br>K 94,5                |
| 127,0                        | K 05                        | 1270,0                        | K 50                        | 2413,0                        | K 95                          |
| 139,7<br>152,4               | K 5,5<br>K 06               | 1282,7<br>1295,4              | K 50,5<br><mark>K 51</mark> | 2425,7<br>2438,4              | K 95,5<br><mark>K 96</mark>   |
| 165,1                        | K 6,5                       | 1308,1                        | K 51,5                      | 2450,4                        | K 96,5                        |
| 177,8                        | K 07                        | 1320,8                        | K 52                        | 2463,8                        | K 97                          |
| 190,5<br>203,2               | <mark>K 7,5</mark><br>K 08  | 1333,5<br>1346,2              | K 52,5<br>K 53              | 2476,5<br>2489,2              | K 97,5<br>K 98                |
| 215,9                        | K 8,5                       | 1358,9                        | K 53,5                      | 2501,9                        | K 98,5                        |
| 228,6<br>241,3               | <mark>K 09</mark><br>K 9,5  | <mark>1371,6</mark><br>1384,3 | <mark>K 54</mark><br>K 54,5 | 2514,6<br>2527,3              | <mark>K 99</mark><br>K 99,5   |
| 254,0                        | K 10                        | 1397,0                        | K 55                        | 2540,0                        | K 100                         |
| 266,7<br>279,4               | K 10,5<br>K 11              | 1409,7<br>1422,4              | K 55,5<br>K 56              | 2552,7<br>2565,4              | K 100,5<br>K 101              |
| 292,1                        | K 11,5                      | 1435,1                        | K 56,5                      | 2578,1                        | K 101,5                       |
| 304,8<br>317,5               | <mark>K 12</mark><br>K 12,5 | <b>1447,8</b><br>1460,5       | <mark>K 57</mark><br>K 57,5 | 2590,8<br>2603,5              | <mark>K 102</mark><br>K 102,5 |
| 330,2                        | K 12,5<br>K 13              | 1473,2                        | K 58                        | 2616,2                        | K 102,5<br>K 103              |
| 342,9<br>355,6               | K 13,5<br>K 14              | 1485,9<br>1498,6              | K 58,5<br>K 59              | 2628,9<br>2641,6              | K 103,5<br>K 104              |
| 368,3                        | K 14,5                      | 1511,3                        | K 59,5                      | 2654,3                        | K 104<br>K 104,5              |
| 381,0                        | K 15                        | <mark>1524,0</mark><br>1536,7 | K 60                        | 2667,0                        | <mark>K 105</mark><br>K 105.5 |
| 393,7<br>406,4               | K 15,5<br>K 16              | 1536,7                        | K 60,5<br>K 61              | 2679,7<br>2692,4              | K 105,5<br>K 106              |
| 419,1                        | K 16,5                      | 1562,1                        | K 61,5                      | 2705,1                        | K 106,5                       |
| 431,8<br>444,5               | K 17<br>K 17,5              | 1574,8<br>1587,5              | K 62<br>K 62,5              | 2717,8<br>2730,5              | K 107<br>K 107,5              |
| 457,2                        | K 18                        | 1600,2                        | K 63                        | 2743,2                        | K 108                         |
| 469,9<br>482,6               | K 18,5<br>K 19              | 1612,9<br>1625,6              | K 63,5<br>K 64              | 2755,9<br>2768,6              | K 108,5<br>K 109              |
| 495,3                        | K 19,5                      | 1638,3                        | K 64,5                      | 2781,3                        | K 109,5                       |
| 508,0<br>520,7               | K 20<br>K 20,5              | 1651,0<br>1663,7              | K 65<br>K 65,5              | 2794,0<br>2806,7              | K 110<br>K 110,5              |
| 533,4                        | K 21                        | 1676,4                        | K 66                        | 2819,4                        | K 110,5<br>K 111              |
| 546,1                        | K 21,5                      | 1689,1                        | K 66,5                      | 2832,1                        | K 111,5                       |
| 558,8<br>571,5               | K 22<br>K 22,5              | 1701,8<br>1714,5              | K 67<br>K 67,5              | 2844,8<br>2857,5              | K 112<br>K 112,5              |
| 584,2                        | K 23                        | 1727,2                        | K 68                        | 2870,2                        | K 113                         |
| 596,9<br>609,6               | K 23,5<br><mark>K 24</mark> | 1739,9<br>1752,6              | K 68,5<br><mark>K 69</mark> | 2882,9<br>2895,6              | K 113,5<br><mark>K 114</mark> |
| 622,3                        | K 24,5                      | 1765,3                        | K 69,5                      | 2908,3                        | K 114,5                       |
| 635,0<br>647,7               | K 25<br>K 25,5              | 1778,0<br>1790,7              | K 70<br>K 70,5              | 2921,0<br>2933,7              | K 115<br>K 115,5              |
| 660,4                        | K 26                        | 1803,4                        | K 71                        | 2946,4                        | K 116                         |
| 673,1<br>685,8               | K 26,5<br>K <b>27</b>       | 1816,1<br><mark>1828,8</mark> | K 71,5<br><mark>K 72</mark> | 2959,1<br>2971,8              | K 116,5<br><mark>K 117</mark> |
| 698,5                        | K 27,5                      | 1841,5                        | K 72,5                      | 2984,5                        | K 117,5                       |
| 711,2<br>723,9               | K 28<br>K 28,5              | 1854,2<br>1866,9              | K 73<br>K 73,5              | 2997,2<br>3009,9              | K 118<br>K 118,5              |
| 736,6                        | K 29                        | 1879,6                        | K 74                        | 3022,6                        | K 119                         |
| 749,3<br><mark>762,0</mark>  | K 29,5<br><mark>K 30</mark> | 1892,3<br><mark>1905,0</mark> | K 74,5<br><mark>K 75</mark> | 3035,3<br><mark>3048,0</mark> | K 119,5<br><mark>K 120</mark> |
| 774,7                        | K 30,5                      | 1917,7                        | K 75,5                      | 50 10,0                       |                               |
| 787,4<br>800,1               | K 31<br>K 31,5              | 1930,4<br>1943,1              | K 76<br>K 76,5              |                               |                               |
| 812,8                        | K 32                        | 1955,8                        | K 77                        |                               |                               |
| 825,5<br>838,2               | K 32,5<br>K 33              | 1968,5<br>1981,2              | K 77,5<br><mark>K 78</mark> |                               |                               |
| 850,9                        | K 33,5                      | 1993,9                        | K 78,5                      |                               |                               |
| 863,6                        | K 34<br>K 34,5              | 2006,6                        | K 79<br>K 79,5              |                               |                               |
| 876,3<br>889,0               | K 34,5<br>K 35              | 2019,3<br>2032,0              | K 79,5<br>K 80              |                               |                               |
| 901,7                        | K 35,5                      | 2044,7                        | K 80,5                      |                               |                               |
| <mark>914,4</mark><br>927,1  | <mark>K 36</mark><br>K 36,5 | 2057,4<br>2070,1              | <mark>K 81</mark><br>K 81,5 |                               |                               |
| 939,8                        | K 37                        | 2082,8                        | K 82                        |                               |                               |
| 952,5<br>965,2               | K 37,5<br>K 38              | 2095,5<br>2108,2              | K 82,5<br>K 83              |                               |                               |
| 977,9                        | K 38,5                      | 2120,9                        | K 83,5                      |                               |                               |
| <mark>990,6</mark><br>1003,3 | <mark>K 39</mark><br>K 39,5 | 2133,6<br>2146,3              | <mark>K 84</mark><br>K 84,5 |                               |                               |
| 1016,0                       | K 40                        | 2159,0                        | K 85                        |                               |                               |
| 1028,7<br>1041,4             | K 40,5<br>K 41              | 2171,7<br>2184,4              | K 85,5<br>K 86              |                               |                               |
| 1054,1                       | K 41,5                      | 2197,1                        | K 86,5                      |                               |                               |
| 1066,8<br>1079,5             | <mark>K 42</mark><br>K 42,5 | 2209,8<br>2222,5              | <mark>K 87</mark><br>K 87,5 |                               |                               |
| 1092,2                       | K 43                        | 2235,2                        | K 88                        |                               |                               |
| 1104,9<br>1117,6             | K 43,5<br>K 44              | 2247,9<br>2260,6              | K 88,5<br>K 89              |                               |                               |
| 1130,3                       | K 44,5                      | 2273,3                        | K 89,5                      |                               |                               |
| 1143,0<br>1155,7             | <mark>K 45</mark><br>K 45,5 | 2286,0<br>2298,7              | <mark>K 90</mark><br>K 90,5 |                               |                               |
| 1168,4                       | K 46                        | 2311,4                        | K 91                        |                               |                               |
| 1181,1<br>1193,8             | K 46,5<br>K 47              | 2324,1<br>2336,8              | K 91,5<br>K 92              |                               |                               |
| 1206,5                       | K 47,5                      | 2349,5                        | K 92,5                      |                               |                               |
| 1219,2                       | K 48                        | 2362,2                        | K 93                        |                               |                               |

Standard widths in <mark>blue</mark>

Other widths available on request

### TOLERANCES CHAIN WIDTH

The indicated widths are nominal dimensions. For certified widths and tolerances refer to our Technical Department

EXAMPLE OF CODENUMBER 7705 HP K 09 I Series Material HP, WHP Width code (inch)

**CHAINS** 7705-7706 see page 30 NOMINAL

# series **8505 - 8506**

| NOMINAL                             |                           |                                 |                  |                                 |                               |                                 |                  |                      |
|-------------------------------------|---------------------------|---------------------------------|------------------|---------------------------------|-------------------------------|---------------------------------|------------------|----------------------|
| WIDTH                               | Width<br>nommm            | Code<br>width                   | Width<br>nommm   | Code<br>width                   | Width<br>nommm                | Code<br>width                   | Width<br>nommm   | Code<br>width        |
| OF CHAIN                            |                           |                                 |                  |                                 |                               |                                 |                  |                      |
|                                     | 59,3<br>67,7              | K 2,33<br>K 2,67                | 795,9<br>804,3   | K 31,33<br>K 31,67              | 1557,9<br>1566,3              | K 61,33<br>K 61,67              | 2319,8<br>2328,3 | K 91,33<br>K 91,67   |
|                                     | 76,2                      | K 3,00                          | 812,8            | K 32,00                         | 1574,8                        | K 62,00                         | 2336,8           | K 92,00              |
|                                     | 82,6                      | K 3,25                          | 821,3            | K 32,33                         | 1583,3                        | K 62,33                         | 2345,2           | K 92,33              |
|                                     | <mark>85,0</mark><br>93,1 | <mark>K 3,33</mark><br>K 3,67   | 829,7<br>838,2   | K 32,67<br>K 33,00              | 1591,7<br>1600,2              | K 62,67<br>K 63,00              | 2353,7<br>2362,2 | K 92,67<br>K 93,00   |
|                                     | 101,6                     | K 4,00                          | 846,7            | K 33,33                         | 1608,7                        | K 63,33                         | 2370,6           | K 93,33              |
|                                     | 110,1                     | K 4,33                          | 855,1            | K 33,67                         | 1617,1                        | K 63,67                         | 2379,1           | K 93,67              |
|                                     | 114,3<br>118,5            | <mark>K 4,50</mark><br>K 4,67   | 863,6<br>872,1   | K 34,00<br>K 34,33              | 1625,6<br>1634,1              | K 64,00<br>K 64,33              | 2387,6<br>2396,0 | K 94,00<br>K 94,33   |
|                                     | 127,0                     | K 5,00                          | 880,5            | K 34,67                         | 1642,5                        | K 64,67                         | 2404,5           | K 94,67              |
|                                     | 135,5<br>143,9            | K 5,33                          | 889,0<br>807 F   | K 35,00                         | 1651,0<br>1659,5              | K 65,00<br>K 65,33              | 2413,0<br>2421,4 | K 95,00<br>K 95,33   |
| Standard widths                     | 143,9                     | K 5,67<br>K 6,00                | 897,5<br>905,9   | K 35,33<br>K 35,67              | 1667,9                        | K 65,67                         | 2421,4           | K 95,55<br>K 95,67   |
| in <mark>blue</mark>                | 160,9                     | K 6,33                          | 914,4            | K 36,00                         | 1676,4                        | K 66,00                         | 2438,4           | K 96,00              |
|                                     | 169,3<br>177,8            | K 6,67<br>K 7,00                | 922,9<br>931,3   | K 36,33<br>K 36,67              | 1684,9<br>1693,3              | K 66,33<br>K 66,67              | 2446,8<br>2455,3 | K 96,33<br>K 96,67   |
|                                     | 186,3                     | K 7,33                          | 939,8            | K 37,00                         | 1701,8                        | K 67,00                         | 2463,8           | K 97,00              |
|                                     | 190,5                     | K 7,50                          | 948,3            | K 37,33                         | 1710,3<br>1718,7              | K 67,33                         | 2472,2           | K 97,33              |
|                                     | 194,7<br>203,2            | K 7,67<br>K 8,00                | 956,7<br>965,2   | K 37,67<br>K 38,00              | 1710,7                        | K 67,67<br>K 68,00              | 2480,7<br>2489,2 | K 97,67<br>K 98,00   |
|                                     | 211,7                     | K 8,33                          | 973,7            | K 38,33                         | 1735,6                        | K 68,33                         | 2497,6           | K 98.33              |
|                                     | 220,1<br>228,6            | K 8,67<br>K 9,00                | 982,1<br>990,6   | K 38,67<br>K 39,00              | 1744,1<br>1752,6              | K 68,67<br>K 69,00              | 2506,1<br>2514,6 | K 98,67<br>K 99,00   |
|                                     | 220,0                     | K 9,33                          | 999,1            | K 39,33                         | 1761,0                        | K 69,33                         | 2523,0           | K 99,33              |
| Other widths                        | 245,5                     | K 9,67                          | 1007,5           | K 39,67                         | 1769,5                        | K 69,67                         | 2531,5           | K 99,67              |
| available on                        | 254,0<br>262,5            | K 10,00<br>K 10,33              | 1016,0<br>1024,5 | K 40,00<br>K 40,33              | 1778,0<br>1786,4              | K 70,00<br>K 70,33              | 2540,0<br>2548,4 | K 100,00<br>K 100,33 |
| request                             | 270,9                     | K 10,67                         | 1032,9           | K 40,67                         | 1794,9                        | K 70,67                         | 2556,9           | K 100,67             |
|                                     | 279,4<br>287,9            | K 11,00<br>K 11,33              | 1041,4<br>1049,9 | K 41,00<br>K 41,33              | 1803,4<br>1811,8              | K 71,00<br>K 71,33              | 2565,4<br>2573,8 | K 101,00<br>K 101,33 |
|                                     | 296,3                     | K 11,55<br>K 11,67              | 1049,9           | K 41,33<br>K 41,67              | 1820,3                        | K 71,33<br>K 71,67              | 2582,3           | K 101,55<br>K 101,67 |
|                                     | 304,8                     | K 12,00                         | 1066,8           | K 42,00                         | 1828,8                        | K 72,00                         | 2590,8           | K 102,00             |
|                                     | 313,3<br>321,7            | K 12,33<br>K 12,67              | 1075,3<br>1083,7 | K 42,33<br>K 42,67              | 1837,2<br>1845,7              | K 72,33<br>K 72,67              | 2599,2<br>2607,7 | K 102,33<br>K 102,67 |
|                                     | 330,2                     | K 13,00                         | 1092,2           | K 43,00                         | 1854,2                        | K 73,00                         | 2616,2           | K 103,00             |
| TOLERANCES                          | 338,7                     | K 13,33                         | 1100,7           | K 43,33                         | 1862,6                        | K 73,33                         | 2624,6           | K 103,33             |
| CHAIN WIDTH                         | 347,1<br>355,6            | K 13,67<br>K 14,00              | 1109,1<br>1117,6 | K 43,67<br>K 44,00              | 1871,1<br>1879,6              | K 73,67<br>K 74,00              | 2633,1<br>2641,6 | K 103,67<br>K 104,00 |
| The indicated                       | 364,1                     | K 14,33                         | 1126,1           | K 44,33                         | 1888,0                        | K 74,33                         | 2650,0           | K 104,33             |
| widths are nominal                  | 372,5<br>381,0            | K 14,67<br>K 15,00              | 1134,5<br>1143,0 | K 44,67<br>K 45,00              | 1896,5<br>1905,0              | K 74,67<br>K 75,00              | 2658,5<br>2667,0 | K 104,67<br>K 105,00 |
| dimensions. For<br>certified widths | 389,5                     | K 15,33                         | 1151,5           | K 45,33                         | 1913,4                        | K 75,33                         | 2675,4           | K 105,33             |
| and tolerances                      | 397,9<br>406,4            | K 15,67<br>K 16,00              | 1159,9<br>1168,4 | K 45,67<br>K 46,00              | 1921,9<br>1930,4              | K 75,67<br>K 76,00              | 2683,9<br>2692,4 | K 105,67<br>K 106,00 |
| refer to our                        | 414,9                     | K 16,33                         | 1176,9           | K 46,33                         | 1938,8                        | K 76,33                         | 2700,8           | K 106,33             |
| Technical                           | 423,3<br>431,8            | K 16,67<br>K 17,00              | 1185,3<br>1193,8 | K 46,67<br>K 47,00              | 1947,3<br>1955,8              | K 76,67<br>K 77,00              | 2709,3<br>2717,8 | K 106,67<br>K 107,00 |
| Department                          | 431,8                     | K 17,00<br>K 17,33              | 1202,3           | K 47,00<br>K 47,33              | 1953,8                        | K 77,00<br>K 77,33              | 2717,8           | K 107,00<br>K 107,33 |
|                                     | 448,7                     | K 17,67                         | 1210,7           | K 47,67                         | 1972,7                        | K 77,67                         | 2734,7           | K 107,67             |
|                                     | 457,2<br>465,7            | <mark>K 18,00</mark><br>K 18,33 | 1219,2<br>1227,7 | K 48,00<br>K 48,33              | <mark>1981,2</mark><br>1989,6 | <mark>K 78,00</mark><br>K 78,33 | 2743,2           | K 108,00             |
|                                     | 474,1                     | K 18,67                         | 1236,1           | K 48,67                         | 1998,1                        | K 78,67                         |                  |                      |
|                                     | 482,6<br>491,1            | K 19,00<br>K 19,33              | 1244,6<br>1253,1 | K 49,00<br>K 49,33              | 2006,6<br>2015,0              | K 79,00<br>K 79,33              |                  |                      |
|                                     | 499,5                     | K 19,67                         | 1261,5           | K 49,67                         | 2013,0                        | K 79,67                         |                  |                      |
|                                     | 508,0                     | K 20,00                         | 1270,0           | K 50,00                         | 2032,0                        | K 80,00                         |                  |                      |
|                                     | 516,5<br>524,9            | K 20,33<br>K 20,67              | 1278,5<br>1286,9 | K 50,33<br>K 50,67              | 2040,4<br>2048,9              | K 80,33<br>K 80,67              |                  |                      |
|                                     | 533,4                     | K 21,00                         | 1295,4           | K 51,00                         | 2057,4                        | K 81,00                         |                  |                      |
|                                     | 541,9<br>550,3            | K 21,33<br>K 21,67              | 1303,9<br>1312,3 | K 51,33<br>K 51,67              | 2065,8<br>2074,3              | K 81,33<br>K 81,67              |                  |                      |
| EXAMPLE OF                          | 558,8                     | K 22,00                         | 1320,8           | K 52,00                         | 2082,8                        | K 82,00                         |                  |                      |
| CODENUMBER                          | 567,3<br>575,7            | K 22,33<br>K 22,67              | 1329,3<br>1337,7 | K 52,33<br>K 52,67              | 2091,2<br>2099,7              | K 82,33<br>K 82,67              |                  |                      |
| 8506 HP K06                         | 584,2                     | K 22,07<br>K 23,00              | 1346,2           | K 52,07<br>K 53,00              | 2108,2                        | K 83,00                         |                  |                      |
| Series                              | 592,7                     | K 23,33                         | 1354,7           | K 53,33                         | 2116,6                        | K 83,33                         |                  |                      |
| Material                            | 601,1<br>609,6            | K 23,67<br><mark>K 24,00</mark> | 1363,1<br>1371,6 | K 53,67<br><mark>K 54,00</mark> | 2125,1<br>2133,6              | K 83,67<br><mark>K 84,00</mark> |                  |                      |
| HP, WHP,                            | 618,1                     | K 24,33                         | 1380,1           | K 54,33                         | 2142,0                        | K 84,33                         |                  |                      |
| WHT                                 | 626,5<br>635,0            | K 24,67<br>K 25,00              | 1388,5<br>1397,0 | K 54,67<br>K 55,00              | 2150,5<br>2159,0              | K 84,67<br>K 85,00              |                  |                      |
| Width code                          | 643,5                     | K 25,33                         | 1405,5           | K 55,33                         | 2167,4                        | K 85,33                         |                  |                      |
| (inch)                              | 651,9                     | K 25,67                         | 1413,9           | K 55,67                         | 2175,9                        | K 85,67                         |                  |                      |
|                                     | 660,4<br>668,9            | K 26,00<br>K 26,33              | 1422,4<br>1430,9 | K 56,00<br>K 56,33              | 2184,4<br>2192,8              | K 86,00<br>K 86,33              |                  |                      |
|                                     | 677,3                     | K 26,67                         | 1439,3           | K 56,67                         | 2201,3                        | K 86,67                         |                  |                      |
|                                     | 685,8<br>694,3            | K 27,00<br>K 27,33              | 1447,8<br>1456,3 | K 57,00<br>K 57,33              | 2209,8<br>2218,2              | K 87,00<br>K 87,33              |                  |                      |
|                                     | 702,7                     | K 27,33<br>K 27,67              | 1450,5           | K 57,53<br>K 57,67              | 2210,2                        | K 87,67                         |                  |                      |
|                                     | 711,2                     | K 28,00                         | 1473,2           | K 58,00                         | 2235,2                        | K 88,00                         |                  |                      |
| CHAINS                              | 719,7<br>728,1            | K 28,33<br>K 28,67              | 1481,7<br>1490,1 | K 58,33<br>K 58,67              | 2243,6<br>2252,1              | K 88,33<br>K 88,67              |                  |                      |
| 8505-8506                           | 736,6                     | K 29,00                         | 1498,6           | K 59,00                         | 2260,6                        | K 89,00                         |                  |                      |
| see page 24                         | 745,1<br>753,5            | K 29,33<br>K 29,67              | 1507,1<br>1515,5 | K 59,33<br>K 59,67              | 2269,0<br>2277,5              | K 89,33<br>K 89,67              |                  |                      |
|                                     | 762,0                     | K 30,00                         | 1524,0           | K 60,00                         | 2286,0                        | K 90,00                         |                  |                      |
|                                     | 770,5<br>778,9            | K 30,33<br>K 30,67              | 1532,5<br>1540,9 | K 60,33<br>K 60,67              | 2294,4<br>2302,9              | K 90,33<br>K 90,67              |                  |                      |
|                                     | 787,4                     | K 31,00                         | 1549,4           | K 61,00                         | 2302,9                        | K 91,00                         |                  |                      |
|                                     |                           |                                 |                  |                                 |                               |                                 |                  |                      |



Calculation of chain pull (F) Horizontal conveyors  $F = (2W + M) \bullet L \bullet F W \bullet 9,81$ Fm)]=9,8  $F = [(2M + M) \bullet L \bullet F M + (M \bullet$ Without accumulation With accumulation and a state of the Inclined conveyors with flights w+(M+H)=9,81 1.2 veyors 山田市 ghts 100 F = [(2W)]at accumulation F = [(2)](Nº Y accumulation Calculation of rec

## SOFTWARE REXNORD

To ensure optimum operation of MatTop<sup>®</sup> chains, Rexnord has developed special software for the calculation of the loads and tensions in the chains.

This program also provides additional information about the design of almost every type of conveyor.

For more information please contact our Engineering Department.







L

н



### Legend

- = Chainpull (per meter width of conveyor) N/m. F
- = Weight of chain per square meter-  $Kg/m^2$ . w See page with information of selected chain.
- = Weight of conveyed product per square meter Kg/m<sup>2</sup>. Μ
  - = Horizontal centre distance m.
- **Fw** = Coefficient of friction between chain and wearstrip. See table 1.
- Ls = Length of conveyor, where accumulation occurs m.
- Fm = Coefficient of friction between chain and conveyed product. See table 2.
  - = Vertical centre distance m.
- Р = Required horsepower at conveyor drive shaft - Kw.
- κ = Width of chain - m.

Material chain

D - AS

LF

HP - WHP

WLT - WSM

HT - WHT

v = Chainspeed - m/min.

| Table 1 - Coefficient of friction | between chain and wearstrip (Fw) |
|-----------------------------------|----------------------------------|
|-----------------------------------|----------------------------------|

Lubrification

Water and soap

Drv

Oil

Dry

Oil

Drv

Oil

Dry

Oil

Dry

Oil

Water

Water

Water

Water

Water

Wear strip materials

Steel Stainless steel

Fw

0.30

0.23

0.15

0,10

0.25

0.20

0,15

0,10

0,22

0.20

0,15 0,10

0.28

0,22

0,15

0,10

0,35

0,25

0,20

0.10

UHMWPE

Nylatron

Fw

0.25

0.21

0.15

0,10

0.20

0.18

0.15

0.10

0.18

0.16

0,14

0,10

0.23

0,20

0,15

0,10

0,30

0,25

0,20

0,10

When the factor H/L is smaller as 0,1 the formula of horizontal conveyors is to be used.

### 2 Verification of chainpull

The actual chainpull F should be lower then the max. recommended chainpull Fmax, as indicated in the diagram of the page with the chain specifications.

Fmax > F

Fmax = max. recommended chainpull - N/m. See tables on pages with chain specifications. F = chainpull - N/m.

### 3 Calculation of required horsepower (P)

$$P = \frac{F \bullet K \bullet V}{60.000} \bullet SF$$

SF = Service factor Continuous operation 1,2 Occasional starts/stops 1,4 Frequent starts/stops 1.6

To obtain the required motor horsepower the efficiency of the drive system should be taken into consideration.

Table 2 - Coefficient of friction between chain and conveyed products (Fm)

|                                  |                                       | Material and type of chain        |                              |                                   |                                   |                              |                                   |                              |
|----------------------------------|---------------------------------------|-----------------------------------|------------------------------|-----------------------------------|-----------------------------------|------------------------------|-----------------------------------|------------------------------|
|                                  |                                       | L                                 | .F                           | HP - WHP                          | l M                               | LT                           | HT - 1                            | WHT                          |
| Material of<br>conveyed products | Lubrification                         | Solid Top<br>Perforated Top<br>Fm | Raised Top<br>Fm             | Solid Top<br>Perforated Top<br>Fm | Solid Top<br>Perforated Top<br>Fm | Raised Top<br>Fm             | Solid Top<br>Perforated Top<br>Fm | Raised Top<br>Fm             |
| Plastic<br>PET                   | Dry<br>Water<br>Water and soap        | 0,20<br>0,18<br>0,15              | 0,18<br>0,14<br>0,10         | 0,18<br>0,16<br>0,14              | 0,22<br>0,19<br>0,15              | 0,19<br>0,16<br>0,12         | 0,30<br>0,25<br>0,20              | 0,24<br>0,20<br>0,16         |
| Cardboard                        | Dry                                   | 0,30                              | 0,22                         | 0,25                              | 0,30                              | 0,25                         | 0,35                              | 0,28                         |
| Steel                            | Dry<br>Water<br>Water and soap<br>Oil | 0,25<br>0,20<br>0,15<br>0,10      | 0,16<br>0,14<br>0,10<br>0,08 | 0,18<br>0,16<br>0,13<br>0,10      | 0,28<br>0,22<br>0,15<br>0,10      | 0,25<br>0,18<br>0,12<br>0,08 | 0,35<br>0,25<br>0,20<br>0,10      | 0,28<br>0,20<br>0,16<br>0,08 |
| Aluminium                        | Dry<br>Water<br>Water and soap        | 0,20<br>0,15<br>0,12              | 0,13<br>0,11<br>0,08         | 0,18<br>0,14<br>0,12              | 0,22<br>0,17<br>0,12              | 0,20<br>0,14<br>0,10         | 0,28<br>0,19<br>0,16              | 0,22<br>0,15<br>0,13         |
| Glass                            | Dry<br>Water<br>Water and soap        | 0,15<br>0,13<br>0,10              | 0,12<br>0,10<br>0,08         | 0,14<br>0,12<br>0,10              | 0,18<br>0,14<br>0,10              | 0,14<br>0,11<br>0,08         | 0,22<br>0,17<br>0,10              | 0,20<br>0,15<br>0,10         |
| Returnable<br>glass bottles      | Dry<br>Water<br>Water and soap        | 0,20<br>0,16<br>0,14              | 0,16<br>0,12<br>0,11         | 0,18<br>0,16<br>0,14              | 0,24<br>0,17<br>0,14              | 0,19<br>0,14<br>0,11         | 0,29<br>0,21<br>0,14              | 0,27<br>0,18<br>0,14         |
| Non returnable<br>glass bottles  | Dry<br>Water<br>Water and soap        | 0,15<br>0,13<br>0,10              | 0,12<br>0,10<br>0,08         | 0,13<br>0,11<br>0,10              | 0,18<br>0,14<br>0,10              | 0,14<br>0,11<br>0,08         | 0,22<br>0,17<br>0,10              | 0,20<br>0,15<br>0,10         |



When the factor H/L is smaller as 0,1 the formula of horizontal conveyors is to be used.

### Legend

- **F** = Chain pull (per meter width of conveyor) N/m.
- M = Weight of conveyed product per square meter Kg/m<sup>2</sup>.
- L = Horizontal centre distance m.
- **Fw** = Coefficient of friction between chain and wearstrip.
- See table 1, page 70.
- Ls = Length of conveyor, where accumulation occurs m.
- $\mathbf{Fm} = \mathbf{Coefficient}$  of friction between chain and conveyed product. See table 2, page 70.
- **H** = Vertical centre distance m.
- W = Weight of the chain with tension plates (indicative \* or exact) Kg/m<sup>2</sup>.
  - \* = When the exact number of tension plates is not yet calculated the following guidelines can be applied :

| Width of cha | in         | Apply  |                |
|--------------|------------|--------|----------------|
| From 75      | to 525 mm  | No. 2  | tension plates |
| From 525     | to 1050 mm |        | tension plates |
| From 1050    | to 1575 mm | No. 6  | tension plates |
| From 1575    | to 2100 mm | No. 8  | tension plates |
| From 2100    | to 3000 mm | No. 10 | tension plates |

The total weight of chain W (Kg/m²) can be calculated as follows :

- W = Weight of chain without tension plates (Kg/m<sup>2</sup>) + Weight of tension plates (1 row : 0,3 Kg/m).
- For weight of chain without tension plates see page 44.

### **2** Calculation of total chain tension (Ftot)

 $Ftot = \frac{F + Fc}{SF \bullet Kv}$ 

- Ftot = Total chain tension N/m. F = Chain pull - N/m.
- Fc = Catenary force N/m.
- SF = Service factor.
- Kv = Speed factor.





| Fc – | I <sup>2</sup> • ₩ _ | W • f | Fc = Catenary force - $N/m$ .                               |
|------|----------------------|-------|-------------------------------------------------------------|
| 10-  | 799 • f              | 102   | I = Span - mm.<br>W = Weight of chain - Kg/m <sup>2</sup> . |

f = Sag - mm.

SELECTION FOR 6390-6391-6392 WITH TENSION PLATES

CHAIN

### Service factor (SF)

| Starting up empty, gradual increase of load       | 1    |
|---------------------------------------------------|------|
| Starting up fully loaded (more than 1 times hour) | 0,83 |
| Elevators                                         | 0,55 |

### Speed factor (Kv)

| No. of<br>teeth     | Speed of chain - m/min   |                             |                              |                              |                              |                              |
|---------------------|--------------------------|-----------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Z                   | 15                       | 30                          | 45                           | 60                           | 75                           | 90                           |
| 8<br>10<br>12<br>16 | 1,0<br>1,0<br>1,0<br>1,0 | 0,68<br>0,80<br>0,95<br>1,0 | 0,48<br>0,57<br>0,68<br>0,80 | 0,36<br>0,43<br>0,50<br>0,60 | 0,28<br>0,34<br>0,40<br>0,49 | 0,22<br>0,27<br>0,34<br>0,40 |

### **3** Calculation of number of tension plates

No. tension  $\geq \frac{\text{Ftot}}{1500}$ 

Ftot = Total tension of chain -

N/m. 1500 = Recommended tension per tension plates - N.

After the exact number of tension plates has been determined and the definite number is different from the earlier made estimation, the calculation should be repeated, using the definite number of tension plates.

SHAFT DIMENSION CALCULATIONS

### Calculation of chain pull (F)

See step 1, page 70.

1

### **2** Calculation of adjusted chain pull (Fadjusted)

Depending on the type of conveyor the adjusted chainpull (Fadjusted) should be calculated with the help of table 3, this value is necessary for the use of diagrams 1 - 2 - 3.

### 3 **Determination of shaft diameter**

### **Round shafts**

The selection of shaft diameter depends on: shaft deflection, shaft bending and torsion.

For every type of load (see diagrams 1 - 2 - 3), the shaft diameter  $d_1 - d_2 - d_3$  should be determined using the adjausted chainpull F in relationship to the centre distances of the bearings L. In case a third bearing is mounted, we consider this to be in the centre of the shaft.

### Square shafts

4

The dimensions of a square shaft can be obtained by multiplying the diameter of the round shaft with the factors from table 4.

| Table 4 | Diagram 1 - Deflection | 0,838 |
|---------|------------------------|-------|
|         | Diagram 2 - Bending    | 0,876 |
|         | Diagram 3 - Torsion    | 1     |

### Selection of shaft diameter

From the 3 different shaft diameters, obtained using the 3 different diagrams the largest diameter should be selected for final application.

| Example | From diagram 1: d1 = 48 mm.    |                    |
|---------|--------------------------------|--------------------|
|         | From diagram 2: $d_2 = 55$ mm. | Definite selection |
|         | From diagram 3: $d_3 = 35$ mm. | d2 = 55 mm         |



Fadjusted • (centre distance bearings L in meters) <sup>4</sup>



### Table 3 - Adjusted chain pull F(adjusted)

| Type of conveyor                | Type<br>shaft | Chainpull Fadjus<br>Diag. 1 - Diag. 2                         | ed - N/m<br><b>Diag. 3</b>  |  |
|---------------------------------|---------------|---------------------------------------------------------------|-----------------------------|--|
| Uni-directional                 | Drive         | Fadjusted = F                                                 | Fadjusted = F               |  |
|                                 | Return        | Fadjusted = $2 \bullet (W \bullet L \bullet Fw) \bullet 9,81$ | Fadjusted = 0<br>no torsion |  |
| Bi-directional                  | Drive         | Fadjusted = $2,6 \bullet F$                                   | Fadjusted = F               |  |
|                                 | Return        | Fadjudted = 2 • F                                             | Fadjusted = 0<br>no torsion |  |
| Bi-directional<br>Return Return | Drive         | Fadjusted = F                                                 | Fadjusted = F               |  |
|                                 | Idler         | Fadjusted = 1,5 • F                                           | Fadjusted = 0<br>no torsion |  |
| Idler 🐻 Idler<br>Drive          | Return        | Fadjusted = $2 \bullet F$                                     |                             |  |









CHAIN

SUPPORT

### Support for conveyors

### Material characteristics

### Wearstrip made from metal

A higher coefficient of friction than plastic materials. Recommended for abrasive evironments and high temperatures.

### **Carbon steel**

It is recommended to use a cold-rolled type of steel with a surface roughness of 1,6÷3,2  $\mu$  with a surface hardness of HRC 25÷30. Lubricants must contain an anti corrosion additive Operating temperatures: in air (- 40 a + 180 °C) in hot water (+ 120 °C)

### **Stainless steel**

It is recommended to use a cold-rolled type of stainless steel with a surface roughness of 1,6-3,2  $\mu$  with a min. hardness of HRC 25. Austenitic and ferritic types of stainless steel have the same wear resistance, however austenitic steel has a higher chemical resistance.

Operating temperatures: in air (- 70 a + 400 °C) in hot water (+ 120 °C)

Plastic wear strip material A lower coefficient of friction compared with metal. Simple assembly, quiet operation.. Recommendation : for polypropylene chains WHT , which are

running dry, always apply plastic wear strip.

### Nylatron

Polyamid with molydisulfide additive. The best solution for conveyors, which are operating without lubrification. It has a low coefficient of friction and high wear resistance. However absorbs humidity and expands. Operating temperatures: in air (0 a + 80 °C) in hot water (+ 65 °C)

### UHMWPE

Polyethylene with a moleculair weight of 1000000. Suitable for dry and lubricated applications. Under dry conditions the wear resistance is the same as Nylatron.

No moisture absorbtion. Has a high chemical resistance. The rigidity is lower than for Nylatron, may deflect under elevated loads. Not recommended for abrasive applications.

Operating temperatures: in air (- 40 a + 80  $^{\circ}$ C)

in hot water (+ 70 °C)

Coefficient of lineair expansion between+ 20 e 120  $^{\circ}$ C : 2 x 10  $^{-4}$ .

### Thermal expansion and contraction

When installing parallel- or herringbone types of pattern (in Nylatron and UHMWPE) the thermal expansion and/or contraction should be considered.

$$\Delta L = L \bullet e \bullet (T - 20 \circ C)$$

- $\Delta L$  = Variation in length, due to temperature change (mm).
- L = Length of guiderail (mm).
- e = Coefficient of lineair expansion.
- T = Operating temperature ( $^{\circ}$ C).
- $20 \circ C =$  Temperatura ambiente.

### Example

A guide rail from UHMWPE with a nominal length of L = 1000 mm, and with a lineair coefficient of expansion of 2 x 10<sup>-4</sup>, at an operating temperature of 70 °C, gives the following elongation:

 $\Delta L = 1000 \text{ mm} \bullet 0,0002 \bullet (70 \text{ °C} - 20 \text{ °C}) = 10 \text{ mm}$ 

### Other informations

Chemical resistance: see page 86. Coefficients of friction (Fw) : see table 1, page 70.

### Systems of chain support

### Parallel guides

Recommended for light-medium loads. Chains with a width up to 1 m. Economical solution. For uni - and bidirectional conveyors (with central drive unit).



Recommended for high loads. The sheet should be perforated. Material in stainless steel or Formica.

Polyethylene is not suitable.



"Herringbone" type of support For chain widths between 1÷3 meters. Uni-directional conveyors with high loads and bi-directional conveyors (with central drive unit). Accumulation tables. The wear of the chain is distributed equally over the whole width of the chain.





|                                         | Weight of<br>pro      | Weight of conveyed<br>product |  |
|-----------------------------------------|-----------------------|-------------------------------|--|
|                                         | 100 Kg/m <sup>2</sup> | 200 Kg/m <sup>2</sup>         |  |
| Chain                                   | A (mm)                | A (mm)                        |  |
| 1505 - 1506                             | 250                   | 200                           |  |
| 2100 - 5935 - 5936 - 5935 Vacuum        | 200                   | 150                           |  |
| 4705 - 4706 - 4705 Vacuum - 5705 - 5706 | 250                   | 200                           |  |
| 4707                                    | 200                   | 150                           |  |
| 4803 - 4812                             | 250                   | 200                           |  |
| 4809                                    | 300                   | 250                           |  |
| 5996 - 5997                             | 200                   | 150                           |  |
| 6390 - 6391 - 6392                      | 300                   | 250                           |  |
| 7705 - 7706                             | 300                   | 250                           |  |

### Types of wear strips (UHMWPE)

**Part. 244** - H = 3 - 5.

Part. 387

- Colour : black

- Colour : green.  $= \underbrace{1}_{1} \underbrace{2}_{1} \underbrace{2}_{1}$ 



Part. 422

Part. 362

- Aluminium profile. - Only for running dry.

0





Part. 367 - Metal profile in AISI 304. - Colour : green.





16 4

For additional information about the characteristics and systems of assembly see : Marbett catalog "Conveyor Components"


#### Operation at ambient temperature (20°C)

GC = Width "effective" chain + A

Length of conveyor

А Up to 10 metri 10 mm A = Clearance between From 10 to 15 meters 15 mm chain and guide. 20 mm Over 15 meters

#### Operation at temperature higher than 20°C

At higher temperatures the thermal expansion of the chain must be taken into account.

GC = Width "effective" chain + A +  $\Delta K$ 

Calculation of thermal expansion ( $\Delta K$ )

 $\Delta K = K \bullet e \bullet (T - 20^{\circ}C)$ 

- = Variation of chain width, due to temperature (mm). ΔK
- Effective width of chain mm. Κ =
- e \_ Lineair coefficient of expansion (to contact our
- engineering dept.). Operating temperature - °C. =
- 20°C = Ambient temperature.

## **Position of guides**



| Chain                                                  | A<br>mm               | C<br>mm |
|--------------------------------------------------------|-----------------------|---------|
| 1505 - 1506                                            | <u>Dp</u><br>2 - 4,95 | 15      |
| 2100                                                   | <u>Dp</u><br>2 - 4,37 | 25      |
| 4705 - 4706 - 4707 - 4705 vacuum<br>4803 - 5705 - 5706 | <u>Dp</u><br>2 - 6,35 | 38      |
| 4812                                                   | $\frac{Dp}{2} - 5,2$  | 38      |
| 4809                                                   | <u>Dp</u><br>2 - 7,9  | 57      |
| 5935 - 5936 - 5935 vacuum<br>8505 - 8506               | <u>Dp</u><br>2 - 4,35 | 19      |
| 5996 - 5997 - 5998                                     | $\frac{Dp}{2} - 9,1$  | 57      |
| 6390 - 6391 - 6392                                     | <u>Dp</u><br>2 - 7,0  | 50      |
| 7705 - 7706                                            | <u>Dp</u><br>2 - 6,35 | 25      |
| 7956                                                   | <u>Dp</u><br>2 - 6,35 | 32      |

### Support of the return of the chain

#### **Guide systems**

Return with rollers



\* = For the chain 5997 a min. diameter of 140 mm is recommended. The radius of the rollers must be bigger as the min. backflex radius of the chain. See table 5.

#### Table 5 - Min. backflex radius

| Chain                                               | Min. Radius (mm) |
|-----------------------------------------------------|------------------|
| 1505 - 1506                                         | 16               |
| 2100 - 5935 - 5936 - 5935 Vacuum - 8505 - 8506      | 25               |
| 4705 - 4706 - 4705 Vacuum - 5705 - 5706 - 5996 - 59 | 98 38            |
| 4707 - 4803 - 6390 - 6391 - 6392                    | 50               |
| 4812                                                | 75               |
| 4809                                                | 100              |
| 5997                                                | 70               |
| 7705 - 7706                                         | 30               |
| 7956                                                | 32               |

#### Return with drums, made from plastic, rubber or metal

For elevated temperatures (pasteurizers), metal rollers are recommended. In applications with products, which tend to adhere (for example sugar, etc.) fixed rollers should be used and/or frequent cleaning be applied.

Important: to avoid chain deformation the shafts of the support rollers must have sufficient rigidity and/or be supported in the middle.



#### Return with rollers Part. 554



ø 60 Ę 40,5

Part. 554 Material: selflubricating PA polyamid (grey). For additional information see our catalog Marbett "Conveyor Accessories"

Dp = Pitch diameter - mm.

CHAIN

**SUPPORT** 



De = Outside diameter of drive sprockets - mm

10 = Clearance min. - mm

#### CHAIN **SUPPORT**

## Catenary for bi-directional conveyors

#### Drive unit at the end

Conveyors with centre distances between 3 and 6 meter. Light duty applications



#### Calculation of the dimensions of the catenary.

#### 1 - Calculation of chainpull (Fadjusted)

Fadjusted =  $F \bullet 2$  (N/meter) Where: F = chain pull (N/m). See step 1, page 70.

#### 2 - Calculation of sag force (Fc)

To determine the sag force Fc, apply table 6. As the sag force Fc in table 6, is based on a chainweight of (1Kg/m<sup>2</sup>), the Fadjusted must be divided by the weight of the chain

(Kg/m<sup>2</sup>). With the help of this value the required catenary information can be obtained from table 6.

For example

Given: . Fadjusted = 1044 N/m Weight of chain = 10,46 Kg/m<sup>2</sup>

The required sag force Fc will be:

Fadjusted

Conveyors with bottom drive

Heavy duty applications.

$$Fc = \frac{Fadjusted}{Weight of chain (Kg/m^2)} = \frac{1044}{10,46} = 99,8 N$$

Referring to table 6, the closest value to 99,8 is:

Fc = 95.20 N

#### 3 - Dimensions catenary

In table 6, the value of Fc = 95,20 N, corresponds with a sag 100 mm, and a span of 2750 mm.

4 - Verify if the sag force Fc is within 5% of the chain pull For a satisfactory performance of the conveyor, the sag force Fc must be equal to F adjusted chainpull Fd (with a permissible deviation of ±5%).

F adjusted  $\pm 5\% = 1044 \pm 5\% = 992 \div 1096$ 

The sag force  $Fc = 95,20 \cdot 10,46$  (weight of chain) = 996 N, is within the 5% permissible deviation. If this is not the case a bottom drive configuration must be choosen.

#### Table 6 - Dimensions catenary

|        |              |                | Sag force Fc (N)<br>For chain with a weight of 1 Kg/m <sup>2</sup> |       |       |       |       |       |       |       |
|--------|--------------|----------------|--------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
|        | 250          | 1,77           | 1,77                                                               | 1,77  | 2,06  | 2,06  | 2,35  | 2,65  | 2,65  | 3,34  |
|        | 500          | 4,81           | 4,22                                                               | 3,92  | 3,63  | 3,63  | 3,63  | 3,63  | 3,92  | 3,92  |
|        | 750          | 10,20          | 10,20                                                              | 6,90  | 6,30  | 5,70  | 5,40  | 5,40  | 5,40  | 5,40  |
|        | 1000         | 17,40          | 13,40                                                              | 11,40 | 9,90  | 9,00  | 8,30  | 7,70  | 7,50  | 7,20  |
| _<br>آ | 1250         | 26,70          | 20,40                                                              | 16,80 | 14,30 | 12,90 | 11,70 | 10,80 | 10,20 | 9,60  |
|        | 1250<br>1500 | 38,30          | 29,00                                                              | 23,60 | 20,40 | 17,70 | 16,20 | 14,70 | 13,70 | 12,30 |
| an     | 1750<br>2000 | 52,00          | 39,20                                                              | 31,70 | 27,00 | 23,60 | 21,00 | 19,10 | 17,70 | 15,90 |
| ي<br>م | 2000         | 67,70          | 50,80                                                              | 41,30 | 34,70 | 30,20 | 27,00 | 24,50 | 22,50 | 19,70 |
|        | 2250         | 85,30          | 64,10                                                              | 51,80 | 43,80 | 37,80 | 33,60 | 30,20 | 27,90 | 23,90 |
|        | 2500         | 105,00         | 79,10                                                              | 63,80 | 53,60 | 46,40 | 41,00 | 36,80 | 33,80 | 29,00 |
|        | 2750         | 127,00         | 95,20                                                              | 76,60 | 64,40 | 55,70 | 49,10 | 44,30 | 40,10 | 34,40 |
|        | 3000         | 151,00         | 113,00                                                             | 91,20 | 76,30 | 65,80 | 58,10 | 52,00 | 47,40 | 40,40 |
|        |              | 75             | 100                                                                | 125   | 150   | 175   | 200   | 225   | 250   | 300   |
|        |              | Chain sag (mm) |                                                                    |       |       |       |       |       |       |       |



Catenary for inclined conveyors





## Material characteristics

#### Acetal (black)

Suitable for high loads. High rigidity and shock load resistance. High dimensional stability. Good resistance against humidity and chemicals. Operating temperatures: in air (-40 a +80 °C) in hot water (+65 °C)

#### PA Polyamid (black)

High toughness. Optimum dimensional stability, also at relatively high temperatures. Good chemical resistance. Operating temperatures: in air  $(0 \ a + 80^{\circ}C)$ in hot water  $(+65^{\circ}C)$ 

#### PA FV Polyamid reinforced (black)

Compared with polyamid PA: improved strength, rigidity and dimensional stability. Higher operating temperatures. Operating temperatures: in air (-5 a +120 °C) in hot water (+100 °C)

#### PE Polyethylene (black/white)

High chemical resistance. Low coefficient of friction. Improved wear resistance. No absorbtion of humidity. Operating temperatures: in air (-40 a +80 °C) in hot water (+70 °C)

#### Heat stabilized, reinforced Polyamid (green)

Specially formulated that resist thermal degradation from boiling water spray (i.e. rinsers, sterilizers, pasteurizers). Operating temperatures: in hot water (+105°C)

## Operation at high- and low temperatures

## SPROCKETS

#### Sprockets with square bore

For these applications sprockets with square bores are recommended. It is important that the notched teeth of the sprockets are in line when installed.



#### Recommendations for installation

In order to allow the width of the chain to change as a result of temperature fluctuations, secure only the centre sprockets (2 or 4), using losking screws or set collars. All other sprockets remain freely moveable on the shaft.

This applies to both the drive side and the return side. For calculation of thermal expansion : see page 74.



Sprocket position secured with setcrews or set collars

## **Operation at ambient temperature (20°C)**

#### Sprockets with round bore

Sprockets with round bores and keyways are normally recommended. When fixing the sprockets ensure that the sprocket teeth are all in line.



#### Recommendations for mounting

#### Uni-directional conveyors

Drive sprockets.

Position the sprockets as indicated on page 78+81. All sprockets must be keyed.

Idlers.

Secure only the 2 central sprockets. The other sprockets to remain freely on the shaft.

#### Bi-directional conveyors "with drive unit at one end"

Sprocket position and keys the same as for uni-directional conveyors.

#### ■ **Bi-directional conveyors** "with bottom drive unit" Drive sprockets.

For the drive sprockets refer to the uni-directional conveyors.

At least 2 sprockets must be locked, preferably those at the outside. With multiple strand conveyors the sprockets of the middle strand should be keyed.

## **Keyway dimensions**

#### Dimensions according to UNI 6604-69 / ISO 773

| Df | b<br>mm |       | t<br>mm |       |
|----|---------|-------|---------|-------|
| mm | nom.    | toll. | nom.    | toll. |
| 25 | 8       |       | 28,3    |       |
| 30 | 8       |       | 33,3    |       |
| 35 | 10      | J9    | 38,3    | + 0,2 |
| 40 | 12      |       | 43,3    | 0     |
| 45 | 14      |       | 48,8    |       |
| 50 | 14      |       | 53,8    |       |





## Position and quantity of sprockets

Due to the tolerances of the chain , the exact position of the sprockets must be determined after the chain has been mounted.

#### Chains 1505 - 1506

#### Number of drive and return sprockets

For every type of working load 4 sprockets for every 304,8 mm (12") of chain width.



#### Chains 2100

|                                         | Factor *    | Qty.      |
|-----------------------------------------|-------------|-----------|
| Number of drive sprockets               | F/Fmax      | sprockets |
| The drawing indicates the different     | 0, ÷0,25    | 2         |
| positions of sprockets for every        | 0,26 ÷ 0,50 | 4         |
| 304,8 mm (12") width of chain. The      | 0,51 ÷ 0,75 | 6         |
| quantity varies with the factor F/Fmax. | 0,76 ÷ 1,00 | 8         |

#### Number of return sprockets

For uni-directional conveyors 4 sprockets for every 304,8 mm of chain width.

| 304,8            |       |          |       |       |          |                   |
|------------------|-------|----------|-------|-------|----------|-------------------|
|                  |       |          |       |       |          |                   |
|                  |       | IAN      | ЧЧ    | ИЧ    | ANF      | ישמע <sub>ן</sub> |
|                  | ₿.    |          |       |       | <u>₿</u> |                   |
| 67,7             | Ă.    |          | 169,4 |       | <b>i</b> | 67,7              |
| l 🌐              | I     | ₿        |       | ₿     |          | ₿                 |
| 33,86            | 84,69 | <b>i</b> | 67,7  |       | 84,69    | 33,86             |
|                  | ₿     | l<br>l   |       | ₿     | ₿        |                   |
| 50,8<br>≤6' 50,8 | 50    | ,8       | 67,7  | t     | 0,8      | 50,8<br>50,8      |
|                  | ) (   | } [      | •     | }     | ₿₿       |                   |
| 42,33            | 33,86 | 42,33    | 33,86 | 42,33 | 33,86    | 42,33             |

## Chains 4705 - 4706 - 4707 - 4705 vacuum

Number of drive sprockets The drawing indicates the different positions of sprockets for every 304,8 mm (12") width of chain. The quantity varies with the factor F/Fmax.

| Factor <b>*</b><br>F/Fmax | Qty.<br>sprockets |
|---------------------------|-------------------|
| 0 ÷ 0,80<br>0,81 ÷ 1,00   | 2<br>4            |

#### Number of return sprockets

For uni-directional conveyors 2 sprockets for every 304,8 mm of chain width.

With sprockets N 4700 - N 5700 - NS 5700 - KU 4700



#### With sprockets NS 4700 - KU 4700 with centre groove



#### Chains 4812

Number of drive sprockets The drawing indicates the different positions of sprockets for every 304,8 mm (12") width of chain. The quantity varies with the factor F/Fmax.

| Factor *    | Qty.      |
|-------------|-----------|
| F/Fmax      | sprockets |
| 0 ÷ 0,25    | 2         |
| 0,26 ÷ 0,50 | 4         |
| 0,51 ÷ 1,00 | 8         |

#### Number of return sprockets

For uni-directional conveyors 2 sprockets for every 304,8 mm of chain width.



**\* F** = Chain pull. See step 1, page 70 \* Fmax = max. recommended chain pull. See diagram on page of selected chain.

DRIVE **SPROCKETS** 

## Chains 4803

## Number of drive sprockets

The drawing indicates the different positions of sprockets for every 304,8 mm (12") width of chain. The quantity varies with the factor F/Fmax.

| Factor *    | Qty.      |
|-------------|-----------|
| F/Fmax      | sprockets |
| 0 ÷ 0,40    | 2         |
| 0,41 ÷ 1,00 | 4         |

#### Number of return sprockets

For uni-directional conveyors 2 sprockets for every 304,8 mm of chain width.



| 35,7 | 152,5 | #<br> | 152,3 | + |
|------|-------|-------|-------|---|

End module. We suggest simmetrical sprocket positioning with minimum distance 152,5.

#### Chains 4809

| Number of drive sprockets<br>The drawing indicates the different | Factor ★<br>F/Fmax | Qty.<br>sprockets |
|------------------------------------------------------------------|--------------------|-------------------|
| positions of sprockets for every                                 | $0 \div 0.40$      | 2                 |
| 304,8 mm (12") width of chain. The                               | 0,41 ÷ 1,00        | 4                 |
| quantity varies with the factor F/Fmax.                          |                    |                   |

#### Number of return sprockets

For uni-directional conveyors 2 sprockets for every 304,8 mm of chain width.





End module. We suggest simmetrical sprocket positioning with minimum distance 152.

## Chains 5705 - 5706

Number of drive and return sprockets With sprockets N 4700 - NS 5700 - KU 4700

#### Chains with modules moulded to width







Chainwidth assembled with multi modules (brick assembly) 



Number of drive and return sprockets With sprockets NS 4700 - KU 4700 with centre groove

#### Chains with modules moulded to width





Chainwidth assembled with multi modules (brick assembly) 





Qty.

sprockets

2

4

6

8

Factor \*

F/Fmax

0,26 ÷ 0,50

0,51 ÷ 0,75

 $0.76 \div 1.00$ 

0

÷ 0,25

#### DRIVE SPROCKETS

## Chains 5935 - 5936 - 5935 vacuum

Number of drive sprockets The drawing indicates the different positions of sprockets for every 304,8 mm (12") width of chain. The quantity varies with the factor F/Fmax.

#### Number of return sprockets

For uni-directional conveyors 2 sprockets for every 304,8 mm of chain width.

#### Series 5935 - 5935 vacuum





#### Chains 5996 - 5997

#### Number of drive and return sprockets

For every type of working load  $\overset{-}{4}$  sprockets for every 304,8 mm (12") of chain width.



#### Chains 5998

#### Number of drive and return sprockets

For every type of working load 4 sprockets for every 304,8 mm (12 ") of chain width.



## Chains 6390 - 6391 - 6392 with tension plates

#### Number of drive and return sprockets

The sprockets (with exception of the central sprocket) must have the same position as the tension plates in the chain. The central sprocket serves as a support of the chain.



#### Chains 6390 - 6391 - 6392 without tension plates

#### Number of drive and return sprockets

For working loads up to 100% of the maximum working load the sprockets should be placed at a centre distance of 75 mm. For working loads up to 50% of the maximum working load the sprockets should be placed at a centre distance of 150 mm. All sprockets should be keyed on the shaft. The chain should be held in position by means of the wearstrips at the sides of the chain.

80

DRIVE **SPROCKETS** 

#### Chains 7705 - 7706

Chains with modules moulded to width

Number of drive and return sprockets







Chainwidth assembled with multi modules (brick assembly)

| Number of drive and return sprockets                                       | Factor *<br>F/Fmax      | Qty.<br>sprockets |
|----------------------------------------------------------------------------|-------------------------|-------------------|
| The drawing indicates the different positions of sprockets for every       | 0 ÷ 0,50<br>0,51 ÷ 1,00 | 2<br>4            |
| 304,8 mm (12") width of chain. The guantity varies with the factor F/Fmax. |                         |                   |

304,8





End module. We suggest simmetrical sprocket positioning with minimum distance 152,4.

## Chains RexFlex<sup>®</sup> 7956

## Number of drive and return sprockets

For every type of working load 4 sprockets for every 381 mm (15") of chain width.



#### Chains 8505 - 8506

#### Chainwidth assembled with multi modules (brick assembly)

|                                         | •                         |                   |
|-----------------------------------------|---------------------------|-------------------|
| Number of drive and return sprockets    | Factor <b>*</b><br>F/Fmax | Qty.<br>sprockets |
| The drawing indicates the different     | 0 ÷ 0,30                  | 2                 |
| positions of sprockets for every        | 0,31 ÷ 0,60               | 3                 |
| 304,8 mm (12") width of chain. The      | 0,61 ÷ 1,00               | 6                 |
| quantity varies with the factor F/Fmax. |                           |                   |

| 304,8     |           |       |                   |                            |
|-----------|-----------|-------|-------------------|----------------------------|
|           |           |       | AAAAAA<br>AAAAAAA | NUUUUT<br>NUUUUT<br>AAAAAA |
| 76,2      | ₿<br>_    | 152,4 | <b>₽</b>          | 76,2                       |
| 50,8      | 101,6     | ∄     | 101,6             | 50,8                       |
| 25,4 50,8 | ₿<br>50,8 |       | 50,8              | 50,8 25,4                  |

#### TRANSFER COMBS

## **MATERIAL CHARACTERISTICS**

#### LF Acetal (brown/white)

Low coefficient of friction. Wear resistant. FDA approved for direct contact with food Operating temperature: in air (-40 a  $+80^{\circ}$ C) / in hot water (+65 °C) Acetal (white)

Mechanical characteristics equal to LF acetal, however with a higher coefficient of friction and reduced wear resistance.

Operating temperature: in air (-40 a  $+80^{\circ}$ C) / in hot water (+65°C)





| Chain | Transfer comb | B (mm)     | D (mm)                |
|-------|---------------|------------|-----------------------|
|       | 4707 146      | 82         |                       |
|       | 4707 190      | 82         | Dn                    |
| 4707  | 4707 216      | 82         | $\frac{Dp}{2} + 12,7$ |
|       | 4707 157 R    | 116        | 2                     |
|       | 4707 187 R    | 116 to 140 |                       |
| 4803  | 4803 152      | 82         | $\frac{Dp}{2} + 12,7$ |
|       | 4809 221      | 130        |                       |
| 4809  | 4809 146      | 82         | $\frac{Dp}{2} + 15,9$ |
|       | 4809 216      | 82         | $\frac{1}{2}$ + 15,9  |
|       | 4809 331      | -          |                       |
|       | 4707 146      | 82         |                       |
|       | 4707 190      | 82         | Dn                    |
| 5997  | 4707 216      | 82         | $\frac{Dp}{2}$ +15,5  |
|       | 4707 157 R    | 116        | 2                     |
|       | 4707 187 R    | 116 to 140 | 1                     |

Dp = Pitch diameter - mm

#### TRANSFER PLATE

Sprocket position

PA FV reinforced Polyamid (black)

High rigidity and dimensional stability, also at elevated temperatures. Good chemical resistance. Operating temperature: in air (-5 a +120°C) / in hot water (+100°C) HT Polypropylene (beige) Suitable for high temperatures. High chemical resistance FDA approved for contact with food. Operating temperatures: in air (+5 a +105°C) / in hot water (+105°C)

## System of installation

The type of mounting transferplates depend on the operating temperatures. Transferplates must have the possibility to change lateral position in accordance with the thermal expansion/contraction of the chain as the teeth must stay between the ribs of the chain.

Installation at ambient temperature (20°C). Combs 2and 3 must have screws in the middle of the slotted holes.



Installation at low temperature. Combs 2 and 3 compensate the contraction, caused by the low temperature.



Installation at high temperature. Combs 2 and 3 compensate the expansion, caused by the high temperature.



All transfercombs are designed to safeguard the chain. In case something comes between the Raised Rib chain and combs the combs will break.

# ,8 0,0 'n

| Chaintype | 1505-1506             |                              | 4705-4706<br>5705-5706<br>7705-7706 | 4812                 | 5996-5998            | 6390-6391<br>6392           |
|-----------|-----------------------|------------------------------|-------------------------------------|----------------------|----------------------|-----------------------------|
| D (mm)    | $\frac{Dp}{2} + 3,75$ | $\frac{\text{Dp}}{2}$ + 4,35 | $\frac{\text{Dp}}{2}$ + 6,35        | $\frac{Dp}{2}$ + 5,2 | $\frac{Dp}{2}$ + 9,1 | $\frac{\text{Dp}}{2}$ + 7,0 |

Dp = Pitch diameter - mm



The flights are designed to carry the product only in the area of transfer.

## 5936 Single Module Dynamic Transfer System



| Nr.<br>teeth<br>Z | A<br>mm | D<br>mm | E<br>mm |  |
|-------------------|---------|---------|---------|--|
| 24                | 69,3    | 78,5    | 78      |  |
| 25                | 72,4    | 81,6    | 81,1    |  |

The values are indications only. When installing the chain adjustments should be permitted, depending on the type of conveyed product and situation.

The flights are designed to carry the product only in the area of transfer.

## 8505 Single Module Dynamic Transfer System



|   | Nr.<br>eeth<br>Z | A<br>mm | D<br>mm | E<br>mm | F<br>mm | G<br>mm | The      |
|---|------------------|---------|---------|---------|---------|---------|----------|
|   | 17               | 48      | 57,2    | 56,7    | 12      | 172     | onl      |
|   | 21               | 60,2    | 69,4    | 68,9    | 13,2    | 173,2   | cha      |
|   | 24               | 69,3    | 78,5    | 78      | 14      | 174     | be<br>on |
| _ | 25               | 72,4    | 81,6    | 81,1    | 14,3    | 174,3   | pro      |

he values are indications nly. When installing the hain adjustments should e permitted, depending n the type of conveyed roduct and situation.

The flights are designed to carry the product only in the area of transfer.

#### 7705 Single Module Dynamic Transfer System



| Nr.<br>teeth<br>Z                    | A<br>mm | D<br>mm | E<br>mm | G<br>mm |  |
|--------------------------------------|---------|---------|---------|---------|--|
| 16                                   | 58,7    | 72,1    | 71,4    | W*+11,2 |  |
| 18                                   | 66,8    | 80,2    | 79,5    | W*+11,2 |  |
| 21                                   | 79      | 92,4    | 91,7    | W*+11,2 |  |
| *= Chain widths W = 160,1 - 236,3 mm |         |         |         |         |  |

The values are indications only. When installing the chain adjustments should be permitted, depending on the type of conveyed product and situation.

The flights are designed to carry the product only in the area of transfer.

#### 7700 Two-Piece Dynamic Transfer System



| teeth<br>Z | A<br>mm | D<br>mm | E<br>mm |
|------------|---------|---------|---------|
| 16         | 58,7    | 72,1    | 71,4    |
| 18         | 66,8    | 80,2    | 79,5    |
| 21         | 79      | 92,4    | 91,7    |

The values are indications only. When installing the chain adjustments should be permitted, depending on the type of conveyed product and situation.

The flights are designed to carry the product only in the area of transfer.

Chain widths K = 82,6 114,3 - 152,4 190,5 - 381 mm.



NOTE: Series 4705 vacuum chains are assembled with the modules in line (brick assembly is not possible).



С

76.2

9.52

## Series 5935 Vacuum

19,05

9 5 2

Version E8 (holes in line) Holes diameter: 3,2 - 4 - 5,1 mm.

С С 0

Ш Ш Ш Ш

19,05 19,05 19,05 19,05 19,05 19,05 19,05 19,05 19,05 19,05 19,05 19,05

152.4

С

#### Version of hole pattern

Version E7 (holes in line) Holes diameter: 3,2 - 4 - 5,1 mm.



Version E78 (holes in "diamond" pattern) Holes diameter: 3,2 - 4 - 5,1 mm.



Version of hole pattern Holes diameter(mm) How to order the chain Chain material Series к Pin material Open area Specify: 3,2 6,9 % Chain material 4 8,0 % - Chain series Version E7 - Chain width K inch 5,1 9,9 % - Pin material (See page 61) 3,2 7,2 % - Version of hole pattern (E7, E8 or E78) Acetal (black) LF / HT 5935 Vacuum 4 8,5 % - Holes diameter Version E8 WHT polypropylene(white) 10,6 % 5.1 7,1 % Chain 3.2 4 8,2 % Version E78 Example of codenumber: 5,1 10,3 % HT 5935 K30 WHT pin E8/5.1

84

## Chains 4705-4706-4803-4809-4812

## **Pin retention systems**

The pins are axially locked by pins with hot formed heads.

# $\langle 0 \rangle$ 4705 4706 4812 4803 4809

## Replacement of modules

- With help of a drill the pin 1 head must be removed.
- 2 Remove the pin and replace the module in the chain. To reassemble a new pin is required.
- 3 The pin head can be obtained by hot forming using a soldering iron.



## Chains 1505/6-2100-4707-5705/6-5935/6-5996/7

## Pin retention system

The pins are axially locked in the modules by means of removable plugs. The chain 2100 has plugs on both sides. The other types have plugs on one side only. These plugs have a press fit. Pins can be used again.



## Replacement of modules

Use a screwdriver to remove the plug.



Use a special tool with selftapping tip to pull out the pin. The pins are hollow. Also a long selftapping screw can be used.



## Chains 6390-6391-6392

## Pin retention system The pins are riveted on both

sides and can be used only once



## Replacement of modules

For these chains special replacement modules are available. These modules can be inserted without disassembling the chain.



## Chains 7705-7706-8505-8506

Pin retention system The pins are axially locked on both sides with a rotating lock, patented by Rexnord called 'Twist Lock™". This system is an integral part of the modules and cannot fall out.

## Replacement of modules

To pull out or insert the pin turn the Twist Lock with a screwdriver.

## Chains 5998

Pin retention system Rex® 5998 chain features a unique pin retention design, with special plugs, therefore the pins are completely

## **Replacement of modules**

reusable.

To disassemble chain, grasp pin with needle nose pliers and twist to line up the pin with the offset hole.







#### INSTALLATION AND MAINTENANCE **OF CHAIN**

85

| CHEMICAL                              |                                    |        | WE                        | ARSTRIP MATER      | RIAL                  |                        | (                  | CHAIN MATERIA             | L                   |
|---------------------------------------|------------------------------------|--------|---------------------------|--------------------|-----------------------|------------------------|--------------------|---------------------------|---------------------|
| RESISTANCE                            |                                    | Steel  | austenitic                | Stainless steel    | Polyamide<br>Nylatron | Polyethylene<br>UHMWPE | Acetal<br>D - LF   | Polypropylene<br>HT - WHT | Polyethylene<br>WLT |
|                                       | CHEMICAL AGENT                     | % 23°C | AISI 304 (18/8)<br>% 23°C | AISI 430<br>% 23°C | % 23°C                | % 23°C                 | HP - WHP<br>% 23°C | % 23°C                    | % 23°C              |
|                                       | Acetone                            | _      | 50 +                      | 50 +               | 100 +                 | +                      | 1                  | +                         | +                   |
|                                       | Acetic acid                        | 50 –   | 20 +                      | 20 -               | 10 -                  | 10 +                   | 5 –                | 40 +                      | 10 +                |
|                                       | Ammonia                            | 1      | 50 +                      | 50 +               | 10 +                  | +                      | +                  | 30 +                      | +                   |
|                                       | Aniline                            |        | 3 +                       | 3 +                |                       | 3 +                    | 3 +                |                           | 3 +                 |
|                                       | Beer                               | +      | +                         | +                  | +                     | +                      | +                  | +                         | +                   |
|                                       | Benzene                            | +      | 70 /                      | 70 /               | 100                   | /                      | +                  | +                         | 1                   |
|                                       | Benzol<br>Boric acid               | +      | + 100 /                   | + 100 /            | <u>100 +</u><br>10 +  | /                      | +                  | /                         | /                   |
|                                       | Brine                              | -      | 100 /                     | -                  | 10 +                  | + +                    | 1                  | +                         | + +                 |
|                                       | Butter                             |        | +                         | +                  | ,<br>+                | +                      | +                  | +                         | +                   |
|                                       | Butyric acid                       | +      | 5 +                       | 5 +                | -                     | +                      | -                  |                           | +                   |
|                                       | Calcium chloride                   |        | 10 –                      | 10 –               | 10 +                  | +                      |                    | 50 +                      | +                   |
|                                       | Carbon sulfide                     |        | +                         | /                  | 100 +                 |                        | +                  | +                         | -                   |
|                                       | Carbon tetrachloride               | /      | 10 –                      | 10 –               | +                     | /                      | +                  | -                         | /                   |
|                                       | Caustic soda                       | -      | +                         | +                  | 10 +                  | 25 +                   | 25 –               | 52 +                      | 25 +                |
| Legend                                | Chlorinated water<br>Chlorine      |        |                           | -                  | _                     | - +                    | -                  | - +                       | - +                 |
| Good = +                              | Chloroform                         |        | 100 +                     | 100 /              | 100 -                 | -<br>-                 | _                  |                           | -<br>-              |
| resistance                            | Citric acid                        | -      | 5 +                       | 5 +                | 10 /                  | +                      | 1                  | 10 +                      | +                   |
| Reasonable = $/$                      | Cyclohexane                        |        |                           |                    |                       | -                      | +                  | -                         | -                   |
| resistance                            | Cupric sulfate                     |        | 5 +                       | 5 +                | 10 +                  |                        |                    |                           |                     |
| (limited use,<br>depending            | Diethyl ether                      |        |                           |                    | 100 +                 |                        |                    | +                         |                     |
| on operating                          | Distilled water                    |        | 10                        | 10 /               | +                     | +                      | +                  | +                         | +                   |
| conditions).                          | Ethanol<br>Ethyl chloride          |        | 10 +                      | 10 /               | <u>96 +</u><br>100 +  | 1                      | +                  | 96 +                      | 1                   |
| Poor = -                              | Food fats                          |        | + +                       | ++                 | 100 +                 | +                      |                    | -                         | +                   |
| resistance                            | Food oils                          |        | +                         | +                  | +                     | +                      | +                  | +                         | + +                 |
| (not                                  | Formaldehyde                       | +      | 100 +                     | 100 /              | 30 +                  |                        | +                  | 40 +                      | . /                 |
| recommended<br>for use).              | Formic acid                        | -      | 5 /                       | 5 –                | 10 –                  | 10 +                   | 10 –               |                           | 10 +                |
| ioi use).                             | Fresh water                        | -      | +                         | +                  | +                     | +                      | +                  | +                         | +                   |
|                                       | Fruit juices                       | +      |                           | /                  | +                     | +                      | +                  | +                         | +                   |
|                                       | Gasoline                           | +      | +                         | +                  | +                     | /                      | +                  | 1                         | /                   |
|                                       | Glycerol                           |        | +                         | /                  | +                     | +                      | +                  | +                         | +                   |
| The values                            | Hexane<br>Hydrochloric acid        | 2 -    | +                         | +                  | 10 -                  | - 37 +                 | + 37 -             | + 30 +                    | - 37 +              |
| indicated in the                      | Hydrofluoric acid                  | 2 -    |                           |                    | 40 -                  | 70 +                   | 57 -               | 40 +                      | 70 +                |
| table refer to lab                    | Hydrogen peroxide                  | -      | 30 +                      | 30 +               | 3 –                   | +                      | -                  | 30 +                      | +                   |
| tests on unstressed                   | lodine                             | -      | -                         | -                  | -                     | /                      | -                  | /                         | /                   |
| samples. They                         | Lactic acid                        | -      | 5 +                       | 5 /                | 10 +                  | +                      | +                  | 20 +                      | +                   |
| should be<br>considered purely        | Methyl alcohol                     | _      | 100 /                     | 100 /              | 100 +                 |                        | +                  | +                         |                     |
| indicative as the                     | Methylene chloride                 | _      | /                         | 100 /              | 100 +                 | 1                      | -                  |                           | /                   |
| behaviour of                          | Mercury<br>Milk                    |        | 100 /                     | 100 /              | + +                   | + +                    |                    |                           | +                   |
| materials in real                     | Mineral oils                       | + +    | + +                       | +                  | +                     | +                      | + +                | + +                       | + +                 |
| operating                             | Nitric acid                        | -      | 10 +                      | 10 /               | 10 -                  | 5 /                    | 5 –                | +                         | 5 /                 |
| conditions will                       | Non alcoholic drinks               | +      | +                         | +                  | +                     | +                      | +                  | +                         | +                   |
| depend on a<br>variety of factors:    | Oleic acid                         |        | 100 /                     | 100 /              | 100 +                 | 1                      |                    | +                         | /                   |
| temperature,                          | Paraffin                           | +      | +                         | +                  | +                     | +                      | +                  |                           | +                   |
| concentration of                      | Petroleum                          | +      | +                         | +                  | +                     | -                      | +                  |                           | -                   |
| chemical agent,                       | Petroleum ether<br>Phosphoric acid | 10 -   | + 10 -                    | 10 –               | + 10 -                | 95 +                   | + 10 -             | + 85 +                    | 95 +                |
| short-term of                         | Seawater                           | 10 -   | 10 - +                    | 10 -               | 10 - +                | 95 +<br>+              | 10 -               | 85 + +                    | 95 + +              |
| continuous action<br>of the chemical  | Soap and water                     |        | +                         | +                  | +                     | +                      | +                  | +                         | +                   |
| agent, etc.                           | Sodium carbonate                   |        | 5 +                       | 5 +                | 10 +                  | +                      | +                  | +                         | +                   |
| · · · · · · · · · · · · · · · · · · · | Sodium chloride                    | -      | 5 +                       | 5 /                | 10 +                  | +                      | +                  | +                         | +                   |
|                                       | Sodium hydroxide                   | 25 –   | 25 +                      | 25 +               | 25 –                  | 25 +                   | 25 –               | 25 +                      | 25 +                |
| The % of                              | Sodium hypochlorite                |        | -                         | -                  | +                     | +                      |                    | +                         | +                   |
| concentration is                      | Sodium sulfate<br>Stearic acid     | -      | 5 +                       | 5 +                | + +                   |                        | 1                  | . ·                       |                     |
| based on a mixture                    | Sulfuric acid                      | 40 -   | + 10 -                    | + 10 -             | +                     | + 40 /                 | 40 -               | + 98 +                    | + 40 /              |
| of the specified                      | Tartaric acid                      |        | 10 -                      | 10 -               | +                     | 40 /                   | 30 /               | 10 +                      | 40 /                |
| chemical agent and                    | Tincture of iodine                 |        |                           |                    | _                     | +                      | /                  | 10 +                      | +                   |
| distilled water.                      | Toluene (Toluol)                   | +      | +                         | +                  | +                     | _                      | 1                  | +                         | -                   |
|                                       | Trichloro-ethylene                 |        | +                         | +                  | 1                     |                        |                    | 1                         |                     |
|                                       | Turpentine                         |        | +                         | +                  |                       | -                      | -                  |                           | -                   |
| For additional                        | Vaseline<br>Vasetable inices       | · ·    |                           |                    | +                     | 1                      |                    |                           | 1                   |
| information about                     | Vegetable juices                   | /      | +                         | +                  | +                     | +                      | +                  | +                         | +                   |
| materials and                         | Vegetable oils<br>Vinegar          | + _    | + +                       | ++                 | + +                   | ++                     | ++                 | + +                       | + +                 |
| chemical agents<br>please contact our | Whisky                             | +      | +                         | +                  | +                     | +                      | +                  | + +                       | +                   |
| engineering                           | Wine                               | +      | +                         | +                  | +                     | +                      | +                  | +                         | +                   |
| department.                           | Xylene                             | +      | +                         | +                  | +                     | 1                      | +                  | -                         | 1                   |
|                                       |                                    |        |                           |                    |                       |                        |                    |                           |                     |

| TO CONVERT | INTO | MULTIPLY BY | CONVERSION<br>FACTORS |
|------------|------|-------------|-----------------------|
|            |      |             |                       |

## LENGTH

| Inches (in.)     | Millimetres (mm) | 25,4    |
|------------------|------------------|---------|
| Inches (in.)     | Metres (m)       | 0,0254  |
| Feet (ft.)       | Millimetres (mm) | 304,8   |
| Feet (ft.)       | Metres (m)       | 0,3048  |
| Millimetres (mm) | Inches (in.)     | 0,03937 |
| Metres (m)       | Inches (in.)     | 39,37   |
| Millimetres (mm) | Feet (ft.)       | 0,0328  |
| Metres (m)       | Feet (ft.)       | 3,2808  |
|                  |                  |         |

## **WEIGHT**

| Pounds (lb)                                         | Kilograms (Kg)             | 0,4536 |
|-----------------------------------------------------|----------------------------|--------|
| Pounds / foot² (lb/ft²)                             | Kilograms / metre² (Kg/m²) | 4,8824 |
| Kilograms (Kg)                                      | Pounds (lb)                | 2,2046 |
| Kilograms / metre <sup>2</sup> (Kg/m <sup>2</sup> ) | Pounds / foot² (lb/ft²)    | 0,2048 |

## FORCE

| Newton (N)<br>Pounds - force (Ib) | Kilograms - force (Kgf)<br>Newton (N) | 0,102<br>4,448 |
|-----------------------------------|---------------------------------------|----------------|
| Pounds / foot (lb/ft)             | Newton / metre (N/m)                  | 14,59          |
| Kilograms - force (Kgf)           | Newton (N)                            | 9,807          |
| Newton (N)                        | Pounds - force (lb)                   | 0,225          |
| Newton / metre (N/m)              | Pounds / foot (lb/ft)                 | 0,0685         |

## **POWER**

| Horse power (CV) | Kilowatt (kW)    | 0,735 |
|------------------|------------------|-------|
| Horse power (HP) | Kilowatt (kW)    | 0,745 |
| Kilowatt (kW)    | Horse power (CV) | 1,36  |
| Kilowatt (kW)    | Horse power (HP) | 1,341 |

## **SPEED**

| Feet / minute (ft/min)  | Metres / minute (m/min) | 0,3048 |
|-------------------------|-------------------------|--------|
| Metres / minute (m/min) | Feet / minute (ft/min)  | 3,2808 |

## TEMPERATURE

| Conversion between degrees Fahrenheit (°F) and centigrade (°C) | $^{\circ}\mathbf{C} = \frac{5}{9} \bullet (^{\circ}\mathbf{F} - 32^{\circ})$ |
|----------------------------------------------------------------|------------------------------------------------------------------------------|
| Conversion between degrees centigrade (°C) and Fahrenheit (°F) | ${}^{\circ}F = \frac{9 \bullet {}^{\circ}C}{5} + 32^{\circ}$                 |

#### CLEANING

#### General informations

Without the continual cleaninig action of soap and water lubrification, dirt, debris, and spilled product, such as syrup, beer, soda, etc. May build up on the chain and in the conveyor tracks. This can result in increased wear of the chain, wear strips, and sprockets. This can also cause increased container backline pressures, and even damage containers. Therefore, a thorough and regular cleaning procedure is very important to the succesful operation of any dry running conveyor line.

**NOTE:** if conveyors are going to sit idle for a long time before start-up, they should be covered with plastic or drop cloth to minimize dirt and debris than can settle into chain and tracks. **NOTE:** before start up, remove any tools, fasteners, or other items that may have been left behind. Thoroughly clean chain, wear strips, and tracks (carry & return) with air hose or high pressure water spray.

#### Recommended cleaning frequency

#### Completely dry lines

These lines should be cleaned daily to obtain maximum sanitation and performance. At the very minimum, rinse daily and thoroughly sanitize weekly.

#### Partially lubricated lines

Thoroughly sanitize these lines weekly.

#### General guidelines for cleaning solutions

- 1. Recommended ph of 4,5 9.
- 2. Avoid chlorine (bleach), ammonia, and lodine.
- With plastics chain, avoid phosphoric acid (found in many stainless steel cleaners).
- 4. Refer to pag. 86 to the determine compatibility of cleaners used on chain and other conveyor components.

#### Methods of cleaning

- Periodic high pressure hot water rinse or steam cleaning should prove satisfactory. Spray the chain in place on each conveyor, both on the carry and in the return sections. This is usually done with the conveyors running, but the chain can be stationary. For easy access to the undersides of the chains in the carry and return ways, some manufacturers provide "clean-out" holes in the side frames.
- Warm water and mild soap are commonly used to clean the conveyors.
- 3. Foaming agents or other chemical cleaners may be used if they are compatible with the conveyor materials (see page 86 for chemical compatibility). Carefully follow the instructions provided by the manufacturer to determine proper concentration of solutions and proper, safe use and disposal.

Note: keep water, steam, and chemicals away from electrical disconnects, motors, photo cells, etc.

- 4. In some cases, e.g. pet bottle lines, cleaners or combination "cleaner/lubricants" are applied continuosly or intermittently. Several types of automatic application systems are available.
- 5. In extreme situations, it may be necessary to periodically clean the chains with a bristle brush. Clean the chain in place on the conveyor, both on the carry and in the return sections.

Note : the main objective is to clean the chain carrying surface and underside as well as the wear strips and tracks.

Note : inspect conveyors often. Remove broken or jammed containers or pieces of containers as soon as they are detected. Use cleaning solutions to clean away excessive spillage.



## SALES OFFICES:

| Austria        | - Wien                                                   |
|----------------|----------------------------------------------------------|
| Denmark        | - Copenhagen                                             |
| France         | - Paris-Lyon                                             |
| Germany        | - Betzdorf (with distribution centre)                    |
|                | - Düsseldorf - Siegen - Stuttgart                        |
| Italy          | <ul> <li>Correggio (with distribution centre)</li> </ul> |
| Netherlands    | - 's-Gravenzande (with distribution centre)              |
| United Kingdom | - Warrington                                             |
| Canada         | - Edmonton-Montreal-Toronto-Vancouver                    |
| United States  | <ul> <li>Atlanta (GA)-Columbus (OH)</li> </ul>           |
|                | - Dallas (TX)-Fresno (CA)-Grafton (WI)                   |
| Mexico         | - Cordoba - Guadalajara                                  |
|                | <ul> <li>Mexico City-Queretaro</li> </ul>                |
| Brazil         | - Sao Leopoldo-Sao Paulo                                 |
| Australia      | - Melbourne-Sydney                                       |
| Singapore      | - Singapore                                              |
| China          | - Shangai                                                |
|                |                                                          |



### Rexnord Marbett s.p.A. Italy

Via della Costituzione, 45 42015 Correggio (RE) Tel. 0522 - 639333 Fax 0522 - 637778 E-mail vendite.italia@rexnordmarbett.it **RMCC Nederland** P.O. Box 112 2690 AC 's-Gravenzande The Netherlands Phone 0174 - 445111 Fax 0174 - 445222

E-mail mcc@euronet.nl

